Tools for working with MARC data in Catalogue Bridge.

Overview

catbridge_tools

Tools for working with MARC data in Catalogue Bridge.

Borrows heavily from PyMarc (https://pypi.org/project/pymarc/).

Requirements

Requires the regex module from https://bitbucket.org/mrabarnett/mrab-regex. The built-in re module is not sufficient.

Also requires py2exe.

Installation

From GitHub:

git clone https://github.com/victoriamorris/catbridge_tools
cd catbridge_tools

To install as a Python package:

python setup.py install

To create stand-alone executable (.exe) files for individual scripts:

python setup.py py2exe 

Executable files will be created in the folder \dist, and should be copied to an executable path.

Both of the above commands can be carried out by running the shell script:

compile_catbridge_tools.sh

Scripts

The scripts listed below can be run from anywhere, once the package is installed and the .exe files have been copied to an executable path.

Correspondence with original Catalogue Bridge tools

Original Catalogue Bridge tool New tool Original syntax Corresponding new syntax
cn-find cn-find CN-FIND cn_find -i -o -c
cn-tidy cn-find CN-FIND cn_find -i -o -c --tidy

Features common to all scripts

File formats

Unless otherwise specified, MARC files are in MARC 21 format, with .lex file extensions. Unless otherwise specified, text files are UTF-8-encoded, with .txt, .csv or .tsv file extensions. Config files are also text files, but may have the file extension .cfg for convenience.

Help

For any script, use the option --help to display help text.

Logs and debugging

Logs will be written to catbridge.log within the working directory. This is a UTF-8 encoded text field and can be read in any text editor. The default logging level is INFO; if option --debug is set, the logging level is changed to DEBUG. See https://docs.python.org/3/library/logging.html#levels for information about logging levels.

cn_find

cn_find is a utility which extracts extract control numbers from specified fields and subfields within a file of MARC records.

The fields and subfields to be extracted are specified in a config file.

Usage: cn_find -i 
   
     -o 
    
      -c 
     
       [options]

Options:
    --conv  Convert 10-digit ISBNs to 13-digit form where possible
    --rid   Include record ID as the first column of the output file
    --tidy  Sort and de-duplicate list

    --debug	Debug mode.
    --help	Show help message and exit.

     
    
   

Files

is the name of the input file, which must be a file of MARC 21 records.

is the name of the file to which the control numbers will be written. This should be a text file.

is the name of the file containing the configuration directives.

The config file

The format of the configuration file is as follows, with one entry per line

FIELD TAG $ subfield character [tab] control number specification

Each line must match the regular expression

^([0-9A-Z]{3})\s*\$?\s*([a-z0-9]?)\s*\t(.*?)\s*$

The field tag is specified using three numbers or UPPERCASE letters.

The subfield code are specified using a single number or lowercase letter. If '$' appears without any following subfield characters, all subfields will be searched for control numbers.

The control number specification tells the script what kind of control number to search for within the subfield. This can either take a value from a pre-defined list, or a regular expression can be used to search for control numbers with any other structure. Regular expressions are case-sensitive.

Control number specification Description Regular expression
ISBN Any structurally plausible ISBN* \b(?=(?:[0-9]+[- ]?){10})[0-9]{9}[0-9Xx]\b|\b(?=(?:[0-9]+[- ]?){13})[0-9]{1,5}[- ][0-9]+[- ][0-9]+[- ][0-9Xx]\b|\b97[89][0-9]{10}\b|\b(?=(?:[0-9]+[- ]){4})97[89][- 0-9]{13}[0-9]\b
ISBN10 Any structurally plausible 10-digit ISBN* \b(?=(?:[0-9]+[- ]?){10})[0-9]{9}[0-9Xx]\b|\b(?=(?:[0-9]+[- ]?){13})[0-9]{1,5}[- ][0-9]+[- ][0-9]+[- ][0-9Xx]\b
ISBN13 Any structurally plausible 13-digit ISBN* \b97[89][0-9]{10}\b|\b(?=(?:[0-9]+[- ]){4})97[89][- 0-9]{13}[0-9]\b
ISSN 8 digits with a hyphen in the middle, where the last digit may be an X \b[0-9]{4}[ -]?[0-9]{3}[0-9Xx]\b
BL001 9 digits \b[0-9]{9}\b
BNB See https://www.bl.uk/collection-metadata/metadata-services/structure-of-the-bnb-number \bGB([0-9]{7}|[A-Z][0-9][A-Z0-9][0-9]{4})\b
LCCN See https://www.loc.gov/marc/bibliographic/bd010.html \b[a-z][a-z ][a-z ]?[0-9]{2}[0-9]{6} ?\b
OCLC "(OCoLC)" followed by digits (OCoLC)[0-9]+\b
ISNI 16 digits separated into groups of 4 with spaces or hyphens \b[0]{4}[ -]?[0-9]{4}[ -]?[0-9]{4}[ -]?[0-9]{3}[0-9Xx]\b
FAST "fst" followed by digits \bfst[0-9]{8}\b

*Note: The ISBN check digit is not validated.

Multiple fields and subfields may be specified. Fields may be repeated with different subfields.

Example:

001 BL001
015$a	BNB
020	ISBN
020$z	ISBN10
500$a	\b[a-z]{7}\b
035$a	OCLC

In the example above, field 500 subfield $a is being searched for 7-character words.

Options

--conv

If option --conv is used, 10-digit ISBNs will be converted to 13-digit form whenever possible (i.e. whenever they are valid ISBNs).

--rid

By default, the output file consists of a single column of strings. If option --rid is used, the output file will consist of two columns: the first column will be the record control number from field 001 and the second column will be as per the default output.

--tidy

If option --tidy is used, the list of control numbers in the output file will be sorted and de-duplicated. Any duplicate control numbers will be written to an additional output file named with the prefix "dp-".

Note: option --tidy cannot be used at the same time as option --rid

Python Package for DataHerb: create, search, and load datasets.

The Python Package for DataHerb A DataHerb Core Service to Create and Load Datasets.

DataHerb 4 Feb 11, 2022
My solution to the book A Collection of Data Science Take-Home Challenges

DS-Take-Home Solution to the book "A Collection of Data Science Take-Home Challenges". Note: Please don't contact me for the dataset. This repository

Jifu Zhao 1.5k Jan 03, 2023
Handle, manipulate, and convert data with units in Python

unyt A package for handling numpy arrays with units. Often writing code that deals with data that has units can be confusing. A function might return

The yt project 304 Jan 02, 2023
Finds, downloads, parses, and standardizes public bikeshare data into a standard pandas dataframe format

Finds, downloads, parses, and standardizes public bikeshare data into a standard pandas dataframe format.

Brady Law 2 Dec 01, 2021
A Python package for modular causal inference analysis and model evaluations

Causal Inference 360 A Python package for inferring causal effects from observational data. Description Causal inference analysis enables estimating t

International Business Machines 506 Dec 19, 2022
MoRecon - A tool for reconstructing missing frames in motion capture data.

MoRecon - A tool for reconstructing missing frames in motion capture data.

Yuki Nishidate 38 Dec 03, 2022
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023
A CLI tool to reduce the friction between data scientists by reducing git conflicts removing notebook metadata and gracefully resolving git conflicts.

databooks is a package for reducing the friction data scientists while using Jupyter notebooks, by reducing the number of git conflicts between different notebooks and assisting in the resolution of

dataroots 86 Dec 25, 2022
Generates a simple report about the current Covid-19 cases and deaths in Malaysia

Generates a simple report about the current Covid-19 cases and deaths in Malaysia. Results are delay one day, data provided by the Ministry of Health Malaysia Covid-19 public data.

Yap Khai Chuen 7 Dec 15, 2022
The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

Bell Eapen 14 Jan 02, 2023
Semi-Automated Data Processing

Perform semi automated exploratory data analysis, feature engineering and feature selection on provided dataset by visualizing every possibilities on each step and assisting the user to make a meanin

Arun Singh Babal 1 Jan 17, 2022
HyperSpy is an open source Python library for the interactive analysis of multidimensional datasets

HyperSpy is an open source Python library for the interactive analysis of multidimensional datasets that can be described as multidimensional arrays o

HyperSpy 411 Dec 27, 2022
A Python 3 library making time series data mining tasks, utilizing matrix profile algorithms

MatrixProfile MatrixProfile is a Python 3 library, brought to you by the Matrix Profile Foundation, for mining time series data. The Matrix Profile is

Matrix Profile Foundation 302 Dec 29, 2022
Anomaly Detection with R

AnomalyDetection R package AnomalyDetection is an open-source R package to detect anomalies which is robust, from a statistical standpoint, in the pre

Twitter 3.5k Dec 27, 2022
PATC: Introduction to Big Data Analytics. Practical Data Analytics for Solving Real World Problems

PATC: Introduction to Big Data Analytics. Practical Data Analytics for Solving Real World Problems

1 Feb 07, 2022
A pipeline that creates consensus sequences from a Nanopore reads. I

A pipeline that creates consensus sequences from a Nanopore reads. It clusters reads that are similar to each other and creates a consensus that is then identified using BLAST.

Ada Madejska 2 May 15, 2022
Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Gabriele 3 Jul 05, 2022
CS50 pset9: Using flask API to create a web application to exchange stocks' shares.

C$50 Finance In this guide we want to implement a website via which users can “register”, “login” “buy” and “sell” stocks, like below: Background If y

1 Jan 24, 2022
Python package for analyzing sensor-collected human motion data

Python package for analyzing sensor-collected human motion data

Simon Ho 71 Nov 05, 2022
Efficient matrix representations for working with tabular data

Efficient matrix representations for working with tabular data

QuantCo 70 Dec 14, 2022