Efficient face emotion recognition in photos and videos

Overview

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficient audiovisual analysis of dynamical changes in emotional state based on information-theoretic approach).

Our approach is described in the arXiv paper published at IEEE SISY 2021. The extended version of this paper is under considereation in the international journal.

All the models were pre-trained for face identification task using VGGFace2 dataset. In order to train PyTorch models, SAM code was borrowed.

We upload several models that obtained the state-of-the-art results for AffectNet dataset. The facial features extracted by these models lead to the state-of-the-art accuracy of face-only models on video datasets from EmotiW 2019, 2020 challenges: AFEW (Acted Facial Expression In The Wild), VGAF (Video level Group AFfect) and EngageWild.

Here are the accuracies measure on the testing set of above-mentioned datasets:

Model AffectNet (8 classes), original AffectNet (8 classes), aligned AffectNet (7 classes), original AffectNet (7 classes), aligned AFEW VGAF
mobilenet_7.h5 - - 64.71 - 55.35 68.92
enet_b0_8_best_afew.pt 60.95 60.18 64.63 64.54 59.89 66.80
enet_b0_8_best_vgaf.pt 61.32 61.03 64.57 64.89 55.14 68.29
enet_b0_7.pt - - 65.74 65.74 56.99 65.18
enet_b2_8.pt 63.025 62.40 66.29 - 57.78 70.23
enet_b2_7.pt - - 65.91 66.34 59.63 69.84

Please note, that we report the accuracies for AFEW and VGAFonly on the subsets, in which MTCNN detects facial regions. The code contains also computation of overall accuracy on the complete testing set, which is slightly lower due to the absence of faces or failed face detection.

In order to run our code on the datasets, please prepare them firstly using our TensorFlow notebooks: train_emotions.ipynb, AFEW_train.ipynb and VGAF_train.ipynb.

If you want to run our mobile application, please, run the following scripts inside mobile_app folder:

python to_tflite.py
python to_pytorchlite.py

Please be sure that EfficientNet models for PyTorch are based on old timm 0.4.5 package, so that exactly tis version should be installed by the following command:

pip install timm==0.4.5
Comments
  • can you share your Manually_Annotated_file cvs files?

    can you share your Manually_Annotated_file cvs files?

    I test affectnet validation data, but get 0.5965 using enet_b2_8.pt. can you share Manually_Annotated_file validation.csv and training.csv to me for debug?

    opened by Dian-Yi 10
  • affectnet march2021 version training script update

    affectnet march2021 version training script update

    As mentioned in #14 , we have different version of affectnet versions. I updated pytorch training script for AffectNet march2021. Two notes are

    • I used horizontal flip for training augmentation,
    • and we have different emotion order in logit.
    opened by sunggukcha 6
  • Confidence range for inference using python library

    Confidence range for inference using python library

    Hi,

    First of all, thank you so much for such a convenient setup to use!

    I'm using the python library face emotion in my code with the model_name = 'enet_b0_8_best_afew'. I was wondering what is the range of the confidence returned by the library or this model in particular. I wasn't able to figure that out.

    Thank you

    opened by varunsingh3000 4
  • Preprocessing of images to run inference

    Preprocessing of images to run inference

    Hello, thank you very much for your work.

    I am trying to preprocess a batch of images (I have my own dataset) the way you prepared your data. I'm following the notebook train_emotions.ipynb as it is in Tensforflow and I'm using that framework.

    I have a question about the steps of the preprocessing, so I would like to ask you if you can tell me the correct steps. These are the steps I'm following, let me know if I'm right or if something is missing:

    1. I already have my images with the faces detected and croppped, i.e, I have a dataset full of faces like this frame9

    2. img = cv2.imread(img_path)

    3. img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    4. img = cv2.resize(img,(224,224))

    5. Then your notebook shows you make a normalization def mobilenet_preprocess_input(x,**kwargs): x[..., 0] -= 103.939 x[..., 1] -= 116.779 x[..., 2] -= 123.68 return x preprocessing_function=mobilenet_preprocess_input

    Here I am having an issue because I cannot cast the subtraction operation between an integer and a float, so I changed it to

    def mobilenet_preprocess_input(x,**kwargs): x[..., 0] = x[..., 0] - 103.939 x[..., 1] = x[..., 1] - 116.779 x[..., 2] = x[..., 2] - 123.68 return x preprocessing_function=mobilenet_preprocess_input

    So, let me know if the process I'm following is correct or if there's something missing.

    Thank you!

    opened by isa-tr 4
  • AttributeError: 'SqueezeExcite' object has no attribute 'gate'

    AttributeError: 'SqueezeExcite' object has no attribute 'gate'

    Excuse me, this problem occurs when using the ‘enet_b2_7.pt’ model to test. I completed it according to the steps you gave, but I really couldn't find the reason for this problem. Do you have any suggestions?

    opened by evercy 4
  • Age gender ethinicity model giving same output for different results

    Age gender ethinicity model giving same output for different results

    `class CNN(object):

    def __init__(self, model_filepath):
    
        self.model_filepath = model_filepath
        self.load_graph(model_filepath = self.model_filepath)
    
    def load_graph(self, model_filepath):
        print('Loading model...')
        self.graph = tf.Graph()
        self.sess = tf.compat.v1.InteractiveSession(graph = self.graph)
    
        with tf.compat.v1.gfile.GFile(model_filepath, 'rb') as f:
            graph_def = tf.compat.v1.GraphDef()
            graph_def.ParseFromString(f.read())
    
        print('Check out the input placeholders:')
        nodes = [n.name + ' => ' +  n.op for n in graph_def.node if n.op in ('Placeholder')]
        for node in nodes:
            print(node)
    
        # Define input tensor
        self.input = tf.compat.v1.placeholder(np.float32, shape = [None, 224, 224, 3], name='input')
        # self.dropout_rate = tf.placeholder(tf.float32, shape = [], name = 'dropout_rate')
    
        tf.import_graph_def(graph_def, {'input_1': self.input})
    
        print('Model loading complete!')
    
        
        # Get layer names
        layers = [op.name for op in self.graph.get_operations()]
        for layer in layers:
            print(layer)
    
    def test(self, data):
    
        # Know your output node name
        output_tensor1,output_tensor2 ,output_tensor3  = self.graph.get_tensor_by_name('import/age_pred/Softmax: 0'),self.graph.get_tensor_by_name('import/gender_pred/Sigmoid: 0'),self.graph.get_tensor_by_name('import/ethnicity_pred/Softmax: 0')
        output = self.sess.run([output_tensor1,output_tensor2 ,output_tensor3], feed_dict = {self.input: data})
    
        return output`
    

    Using this code load "age_gender_ethnicity_224_deep-03-0.13-0.97-0.88.pb" and predict on it. But when predicting on images, every time I am getting same output array.

    [array([[0.01319346, 0.00229602, 0.00176407, 0.00270929, 0.01408699, 0.00574261, 0.00756087, 0.01012164, 0.01221055, 0.01821703, 0.01120028, 0.00936489, 0.01003029, 0.00912451, 0.00813381, 0.00894791, 0.01277262, 0.01034999, 0.01053109, 0.0133063 , 0.01423471, 0.01610439, 0.01528896, 0.01825454, 0.01722076, 0.01933933, 0.01908059, 0.01899827, 0.01919533, 0.0278129 , 0.02204996, 0.02146631, 0.02125309, 0.02146868, 0.02230236, 0.02054285, 0.02096066, 0.01976574, 0.01990371, 0.02064857, 0.01843528, 0.01697922, 0.01610838, 0.01458549, 0.01581902, 0.01377539, 0.01298613, 0.01378927, 0.01191105, 0.01335083, 0.01154454, 0.01118198, 0.01019558, 0.01038121, 0.00920709, 0.00902615, 0.00936321, 0.00969135, 0.00867239, 0.00838663, 0.00797724, 0.00756043, 0.00890809, 0.00758041, 0.00743711, 0.00584346, 0.00555749, 0.00639214, 0.0061864 , 0.00784793, 0.00532241, 0.00567684, 0.00481544, 0.0052173 , 0.00513186, 0.00394571, 0.00415856, 0.00384584, 0.00452774, 0.0041736 , 0.00328163, 0.00327138, 0.00297012, 0.00369216, 0.00284221, 0.00255897, 0.00285459, 0.00232105, 0.00228869, 0.00218005, 0.0021927 , 0.00236659, 0.00233843, 0.00204793, 0.00209861, 0.00231407, 0.00145706, 0.00179674, 0.00186183, 0.00221309]], dtype=float32), array([[0.62949586]], dtype=float32), array([[0.21338916, 0.19771543, 0.19809113, 0.19525865, 0.19554558]], dtype=float32)] Is there something am missing or is this .pb file not meant for predicting?

    opened by sneakatyou 4
  • Provide the validation script/notebook.

    Provide the validation script/notebook.

    Hi,

    I am fond of your works and paper, but I can not find any validation script to validate your result, especially the highest result with efficientNetB2-8 classes-EffectNet.

    Or could you please provide a separate script to pre-process the input images then we can validate the provided weights on your GitHub repository?

    Thank you,

    opened by ltkhang 4
  • A few suggestions.

    A few suggestions.

    Hello!

    I have a couple of ideas:

    1. Could you, please, add text description about difference between models, especially between b0 and b2 general types?
    2. Please consider adding hsemotion-onnx package to the pip repository.
    opened by ioctl-user 3
  • Can not load pretrained models

    Can not load pretrained models

     File "/Users/xxx/Library/Python/3.8/lib/python/site-packages/timm/models/efficientnet_blocks.py", line 47, in forward
        return x * self.gate(x_se)
      File "/Users/xxx/Library/Python/3.8/lib/python/site-packages/torch/nn/modules/module.py", line 947, in __getattr__
        raise AttributeError("'{}' object has no attribute '{}'".format(
    AttributeError: 'SqueezeExcite' object has no attribute 'gate'
    
    opened by DefTruth 3
  • A error when runing codes.

    A error when runing codes.

    When runing AFEW_train.ipynb, an error occured:

    could not broadcast input array from shape (0,112,3) into shape (60,112,3) at facial_anylysis.py line 274 : tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:]

    why dose this occured? could you please fixed it?

    opened by kiva12138 3
  • Valence and arousal

    Valence and arousal

    Hello again! I've read your paper and I've seen that you use the circumplex model's variables arousal and valence. How do those variable appears in the code? I can't find them :( Thank you, Amaia

    opened by AmaiaBiomedicalEngineer 2
  • Question about this work.

    Question about this work.

    Dear Andrey Savchenko,

    I'm a student and going to build a small system to detect student's emotions for my thesis. After finding a solution, I found your job. But I can't run https://github.com/HSE-asavchenko/face-emotion-recognition/blob/main/src/affectnet/train_emotions.ipynb by current AFFECT dataset's version. Please correct me if I'm wrong. My question is: Can I run this workhttps://github.com/HSE-asavchenko/face-emotion-recognition/blob/main/src/affectnet/train_affectnet_march2021_pytorch.ipynb with MobileNet. Because I tend to build small applications to detect emotions from client site then send result to server.

    Many thanks,

    Son Nguyen.

    opened by sonnguyen1996 2
Releases(v0.2.1)
Owner
Andrey Savchenko
Andrey Savchenko
LogAvgExp - Pytorch Implementation of LogAvgExp

LogAvgExp - Pytorch Implementation of LogAvgExp for Pytorch Install $ pip instal

Phil Wang 31 Oct 14, 2022
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API

Timbre Dissimilarity Metrics A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usag

Ben Hayes 21 Jan 05, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior. The code will release soon. Implementation Python3 PyTorch=1.0 NVIDIA GPU+

FengZhang 34 Dec 04, 2022
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
This repository holds code and data for our PETS'22 article 'From "Onion Not Found" to Guard Discovery'.

From "Onion Not Found" to Guard Discovery (PETS'22) This repository holds the code and data for our PETS'22 paper titled 'From "Onion Not Found" to Gu

Lennart Oldenburg 3 May 04, 2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
The full training script for Enformer (Tensorflow Sonnet) on TPU clusters

Enformer TPU training script (wip) The full training script for Enformer (Tensorflow Sonnet) on TPU clusters, in an effort to migrate the model to pyt

Phil Wang 10 Oct 19, 2022
CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

Rakshitha Godahewa 80 Dec 30, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022) By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou,

Shilong Zhang 129 Dec 24, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representation from common sense knowledge graphs.

ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representa

Bats Research 94 Nov 21, 2022
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023
(ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning"

CLNet (ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning" [project page] [paper] Citing CLNet If yo

Chen Zhao 22 Aug 26, 2022
IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales

IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales. In this case, we ended up using XGBoost because it was the o

1 Jan 04, 2022
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning This repository contains the code and relevant instructions

XiaoMing 5 Aug 19, 2022