SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors

Related tags

Text Data & NLPSAVI2I
Overview

License CC BY-NC-SA 4.0 Python 3.6

SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors

[Paper] [Project Website]

Pytorch implementation for SAVI2I. We propose a simple yet effective signed attribute vector (SAV) that facilitates continuous translation on diverse mapping paths across multiple domains.
More video results please see Our Webpage
Contact: Qi Mao ([email protected])

Paper

Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors
Qi Mao, Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Siwei Ma, and Ming-Hsuan Yang
In arXiv 2020

Citation

If you find this work useful for your research, please cite our paper:

    @article{mao2020continuous,
      author       = "Mao, Qi and Lee, Hsin-Ying and Tseng, Hung-Yu and Huang, Jia-Bin and Ma, Siwei and Yang, Ming-Hsuan",
      title        = "Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors",
      journal    = "arXiv preprint 2011.01215",
      year         = "2020"
    }

Quick Start

Prerequisites

  • Linux or Windows
  • Python 3+
  • Suggest to use two P100 16GB GPUs or One V100 32GB GPU.

Install

  • Clone this repo:
git clone https://github.com/HelenMao/SAVI2I.git
cd SAVI2I
  • This code requires Pytorch 0.4.0+ and Python 3+. Please install dependencies by
conda create -n SAVI2I python=3.6
source activate SAVI2I
pip install -r requirements.txt 

Training Datasets

Download datasets for each task into the dataset folder

./datasets
  • Style translation: Yosemite (summer <-> winter) and Photo2Artwork (Photo, Monet, Van Gogh and Ukiyo-e)
  • You can follow the instructions of CycleGAN datasets to download Yosemite and Photo2artwork datasets.
  • Shape-variation translation: CelebA-HQ (Male <-> Female) and AFHQ (Cat, Dog and WildLife)
  • We split CelebA-HQ into male and female domains according to the annotated label and fine-tune the images manaully.
  • You can follow the instructions of StarGAN-v2 datasets to download CelebA-HQ and AFHQ datasets.

Training

Notes

For low-level style translation tasks, you suggest to set --type=1 to use corresponding network architectures.
For shape-variation translation tasks, you suggest to set --type=0 to use corresponding network architectures.

  • Yosemite
python train.py --dataroot ./datasets/Yosemite/ --phase train --type 1 --name Yosemite --n_ep 700 --n_ep_decay 500 --lambda_r1 10 --lambda_mmd 1 --num_domains 2
  • Photo2artwork
python train.py --dataroot ./datasets/Photo2artwork/ --phase train --type 1 --name Photo2artwork --n_ep 100 --n_ep_decay 0 --lambda_r1 10 --lambda_mmd 1 --num_domains 4
  • CelebAHQ
python train.py --dataroot ./datasets/CelebAHQ/ --phase train --type 0 --name CelebAHQ --n_ep 30 --n_ep_decay 0 --lambda_r1 1 --lambda_mmd 1 --num_domains 2
  • AFHQ
python train.py --dataroot ./datasets/AFHQ/ --phase train --type 0 --name AFHQ --n_ep 100 --n_ep_decay 0 --lambda_r1 1 --lambda_mmd 10 --num_domains 3

Pre-trained Models

Download and save them into

./models

or download the pre-trained models with the following script.

bash ./download_models.sh

Testing

Reference-guided

python test_reference_save.py --dataroot ./datasets/CelebAHQ --resume ./models/CelebAHQ/00029.pth --phase test --type 0 --num_domains 2 --index_s A --index_t B --num 5 --name CelebAHQ_ref  

Latent-guided

python test_latent_rdm_save.py --dataroot ./datasets/CelebAHQ --resume ./models/CelebAHQ/00029.pth --phase test --type 0 --num_domains 2 --index_s A --index_t B --num 5 --name CelebAHQ_rdm  

License

All rights reserved.
Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International).
The codes are only for academical research use. For commercial use, please contact [email protected].

Acknowledgements

Codes and network architectures inspired from:

Owner
Qi Mao
PhD student in Institute of Digital Media, Peking University.
Qi Mao
Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models

PEGASUS library Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models, or PEGASUS, uses self-supervised

Google Research 1.4k Dec 22, 2022
Paddle2.x version AI-Writer

Paddle2.x 版本AI-Writer 用魔改 GPT 生成网文。Tuned GPT for novel generation.

yujun 74 Jan 04, 2023
ConferencingSpeech2022; Non-intrusive Objective Speech Quality Assessment (NISQA) Challenge

ConferencingSpeech 2022 challenge This repository contains the datasets list and scripts required for the ConferencingSpeech 2022 challenge. For more

21 Dec 02, 2022
Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.

Summarization, translation, Q&A, text generation and more at blazing speed using a T5 version implemented in ONNX. This package is still in alpha stag

Abel 211 Dec 28, 2022
使用Mask LM预训练任务来预训练Bert模型。训练垂直领域语料的模型表征,提升下游任务的表现。

Pretrain_Bert_with_MaskLM Info 使用Mask LM预训练任务来预训练Bert模型。 基于pytorch框架,训练关于垂直领域语料的预训练语言模型,目的是提升下游任务的表现。 Pretraining Task Mask Language Model,简称Mask LM,即

Desmond Ng 24 Dec 10, 2022
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines

spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t

Kenneth Enevoldsen 32 Dec 29, 2022
Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

0 Feb 13, 2022
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5

NLP-Summarizer Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5 This project aimed to provide in

Samuel Sharkey 1 Feb 07, 2022
SGMC: Spectral Graph Matrix Completion

SGMC: Spectral Graph Matrix Completion Code for AAAI21 paper "Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning". Data Format

Chao Chen 8 Dec 12, 2022
Recognition of 38 speech commands in russian. Based on Yandex Cup 2021 ML Challenge: ASR

Speech_38_ru_commands Recognition of 38 speech commands in russian. Based on Yandex Cup 2021 ML Challenge: ASR Программа умеет распознавать 38 ключевы

Andrey 9 May 05, 2022
Easy, fast, effective, and automatic g-code compression!

Getting to the meat of g-code. Easy, fast, effective, and automatic g-code compression! MeatPack nearly doubles the effective data rate of a standard

Scott Mudge 97 Nov 21, 2022
Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Pulkit Kathuria 173 Jan 04, 2023
Deep Learning for Natural Language Processing - Lectures 2021

This repository contains slides for the course "20-00-0947: Deep Learning for Natural Language Processing" (Technical University of Darmstadt, Summer term 2021).

0 Feb 21, 2022
Implementation of the Hybrid Perception Block and Dual-Pruned Self-Attention block from the ITTR paper for Image to Image Translation using Transformers

ITTR - Pytorch Implementation of the Hybrid Perception Block (HPB) and Dual-Pruned Self-Attention (DPSA) block from the ITTR paper for Image to Image

Phil Wang 17 Dec 23, 2022
Natural Language Processing

NLP Natural Language Processing apps Multilingual_NLP.py start #This script is demonstartion of Mul

Ritesh Sharma 1 Oct 31, 2021
【原神】自动演奏风物之诗琴的程序

疯物之诗琴 读取midi并自动演奏原神风物之诗琴。 可以自定义配置文件自动调整音符来适配风物之诗琴。 (原神1.4直播那天就开始做了!到现在才能放出来。。) 如何使用 在Release页面中下载打包好的程序和midi压缩包并解压。 双击运行“疯物之诗琴.exe”。 在原神中打开风物之诗琴,软件内输入

435 Jan 04, 2023
Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP)

Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP) predictions: part-of-speech (POS) tags, chunking (CHK), name entity recognition (

jawahar 20 Apr 30, 2022
Addon for adding subtitle files to blender VSE as Text sequences. Using pysub2 python module.

Import Subtitles for Blender VSE Addon for adding subtitle files to blender VSE as Text sequences. Using pysub2 python module. Supported formats by py

4 Feb 27, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

Bethge Lab 61 Dec 21, 2022