Confident Semantic Ranking Loss for Part Parsing

Related tags

Deep LearningCSR
Overview

How to run:

Dataset

  1. Download PASCAL-Part dataset [https://cs.stanford.edu/~roozbeh/pascal-parts/pascal-parts.html]

  2. Download the multi-class annotations from [http://cvteam.net/projects/2019/multiclass-part.html]

  3. Modify the configurations in /experiments/CSR/config.py. (The initial performance is about 59.45, then the reported performance can be achieved by fine-tuning.)

  4. Modify the dataset path in /lib/datasets

    (There might be different versions of this dataset, we follow the annotations of CVPR17 to make fair comparisons.)

    PASCAL-Part-multi-class Dataset: http://cvteam.net/projects/2019/figs/Affined.zip

For Test

  1. Download the pretrained model and modify the path in /experiments/config.py

  2. RUN /experiments/CSR/test.py

  3. (Additionally) If customize data, you need to generate a filelist following the VOC format and modify the dataset path.

For Training

If training from scratch, simply run. If not, customize the dir in /experiments/CSR config.py.

(A training demo code is provided in train.py)

  1. (Additionally) download the ImageNet pretrained model:

    model_urls = {

    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',

    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',

    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',

    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',

    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',

    }

  2. Prerequisites: generate semantic part boundaries and semantic object labels. (will be provided soon)

  3. RUN /experiments/CSR/train.py for 100 epochs. (Achieve 59.45 mIoU)

  4. Fine-tune the model using learning rate=0.003 for another 40 epochs. (Achieve 60.70 mIoU)

Acknowledgement

The code is based on the below project:

Yifan Zhao, Jia Li, Yu Zhang, and Yonghong Tian. Multi-class Part Parsing with Joint Boundary-Semantic Awareness in ICCV 2019.

Citation

@inproceedings{tan2021confident,
  title={Confident Semantic Ranking Loss for Part Parsing},
  author={Tan, Xin and Xu, Jiachen and Ye, Zhou and Hao, Jinkun and Ma, Lizhuang},
  booktitle={2021 IEEE International Conference on Multimedia and Expo (ICME)},
  pages={1--6},
  year={2021},
  organization={IEEE}
}
Owner
Jiachen Xu
Jiachen Xu
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Münster 57 Nov 12, 2022
Deep motion generator collections

GenMotion GenMotion (/gen’motion/) is a Python library for making skeletal animations. It enables easy dataset loading and experiment sharing for synt

23 May 24, 2022
Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala, S. Krastanov, M. Eichenfield, and D. R. Englund, 2022

Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala,

Stefan Krastanov 1 Jan 17, 2022
Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM)

Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM) Introduction The average lifetime of the $D^{0}$ me

Son Gyo Jung 1 Dec 17, 2021
[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs In this work, we propose a framework HijackGAN, which enables non-linear latent space travers

Hui-Po Wang 46 Sep 05, 2022
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Pedro Neto 21 Nov 17, 2022
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information This repository contains code, model, dataset for ChineseBERT at ACL2021. Ch

413 Dec 01, 2022
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

MI-AOD Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection (The PDF is not available tem

Tianning Yuan 269 Dec 21, 2022
Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te

Photogrammetry & Robotics Bonn 305 Dec 21, 2022
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore

[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6101 of Semester 1, AY2021-2022, starting from 08/2021. The instructors of

AccSrd 1 Sep 22, 2022
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
Code/data of the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" (BMVC2021)

Hand-Object Contact Prediction (BMVC2021) This repository contains the code and data for the paper "Hand-Object Contact Prediction via Motion-Based Ps

Takuma Yagi 13 Nov 07, 2022
Code for Robust Contrastive Learning against Noisy Views

Robust Contrastive Learning against Noisy Views This repository provides a PyTorch implementation of the Robust InfoNCE loss proposed in paper Robust

Ching-Yao Chuang 53 Jan 08, 2023
OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages

OCR-Streamlit-App OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages OCR app gets an image a

Siva Prakash 5 Apr 05, 2022