🛠️ Tools for Transformers compression using Lightning ⚡

Overview

Hits

Bert-squeeze

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

It gathers a non-exhaustive list of techniques such as distillation, pruning, quantization, early-exiting. The repo is written using PyTorch Lightning and Transformers.

About the project

As a heavy user of transformer-based models (which are truly amazing from my point of view) I always struggled to put those heavy models in production while having a decent inference speed. There are of course a bunch of existing libraries to optimize and compress transformer-based models (ONNX , distiller, compressors , KD_Lib, ... ).
I started this project because of the need to reduce the latency of models integrating transformers as subcomponents. For this reason, this project aims at providing implementations to train various transformer-based models (and others) using PyTorch Lightning but also to distill, prune, and quantize models.
I chose to write this repo with Lightning because of its growing trend, its flexibility, and the very few repositories using it. It currently only handles sequence classification models, but support for other tasks and custom architectures is planned.

Installation

First download the repository:

git clone https://github.com/JulesBelveze/bert-squeeze.git

and then install dependencies using poetry:

poetry install

You are all set!

Quickstarts

You can find a bunch of already prepared configurations under the examples folder. Just choose the one you need and run the following:

python3 -m bert-squeeze.main -cp=examples -cn=wanted_config

Disclaimer: I have not extensively tested all procedures and thus do not guarantee the performance of every implemented method.

Concepts

Transformers

If you never heard of it then I can only recommend you to read this amazing blog post and if you want to dig deeper there is this awesome lecture was given by Stanford available here.

Distillation

The idea of distillation is to train a small network to mimic a big network by trying to replicate its outputs. The repository provides the ability to transfer knowledge from any model to any other (if you need a model that is not within the models folder just write your own).

The repository also provides the possibility to perform soft-distillation or hard-distillation on an unlabeled dataset. In the soft case, we use the probabilities of the teacher as a target. In the hard one, we assume that the teacher's predictions are the actual label.

You can find these implementations under the distillation/ folder.

Quantization

Neural network quantization is the process of reducing the weights precision in the neural network. The repo has two callbacks one for dynamic quantization and one for quantization-aware training (using the Lightning callback) .

You can find those implementations under the utils/callbacks/ folder.

Pruning

Pruning neural networks consist of removing weights from trained models to compress them. This repo features various pruning implementations and methods such as head-pruning, layer dropping, and weights dropping.

You can find those implementations under the utils/callbacks/ folder.

Contributions and questions

If you are missing a feature that could be relevant to this repo, or a bug that you noticed feel free to open a PR or open an issue. As you can see in the roadmap there are a bunch more features to come 😃

Also, if you have any questions or suggestions feel free to ask!

References

  1. Alammar, J (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/
  2. stanfordonline (2021) Stanford CS224N NLP with Deep Learning | Winter 2021 | Lecture 9 - Self- Attention and Transformers. [online video] Available at: https://www.youtube.com/watch?v=ptuGllU5SQQ
  3. Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Jamie Brew (2019). HuggingFace's Transformers: State-of-the-art Natural Language Processing
  4. Hassan Sajjad and Fahim Dalvi and Nadir Durrani and Preslav Nakov (2020). Poor Man's BERT Smaller and Faster Transformer Models
  5. Angela Fan and Edouard Grave and Armand Joulin (2019). Reducing Transformer Depth on Demand with Structured Dropout
  6. Paul Michel and Omer Levy and Graham Neubig (2019). Are Sixteen Heads Really Better than One?
  7. Fangxiaoyu Feng and Yinfei Yang and Daniel Cer and Naveen Arivazhagan and Wei Wang (2020). Language-agnostic BERT Sentence Embedding
Owner
Jules Belveze
AI craftsman | NLP | MLOps
Jules Belveze
Code for "Causal autoregressive flows" - AISTATS, 2021

Code for "Causal Autoregressive Flow" This repository contains code to run and reproduce experiments presented in Causal Autoregressive Flows, present

Ricardo Pio Monti 35 Dec 16, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

Jia Research Lab 116 Dec 20, 2022
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
Lolviz - A simple Python data-structure visualization tool for lists of lists, lists, dictionaries; primarily for use in Jupyter notebooks / presentations

lolviz By Terence Parr. See Explained.ai for more stuff. A very nice looking javascript lolviz port with improvements by Adnan M.Sagar. A simple Pytho

Terence Parr 785 Dec 30, 2022
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car

Deploy-yolo-fastest-tflite-on-raspberry 觉得有用的话可以顺手点个star嗷 这个项目将垃圾分类小车中的tflite模型移植到了树莓派3b+上面。 该项目主要是为了记录在树莓派部署yolo fastest tflite的流程 (之后有时间会尝试用C++部署来提升

7 Aug 16, 2022
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

32 Sep 21, 2022
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper

DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati

Mostafa Elhoushi 88 Dec 23, 2022
Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

CLIP-Guided-Diffusion Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab. Original colab notebooks by Ka

Nerdy Rodent 336 Dec 09, 2022
Unified MultiWOZ evaluation scripts for the context-to-response task.

MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval

Tomáš Nekvinda 38 Dec 13, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner

Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges

Andrew Stolman 1 Apr 30, 2021
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
Multi-Modal Fingerprint Presentation Attack Detection: Evaluation On A New Dataset

PADISI USC Dataset This repository analyzes the PADISI-Finger dataset introduced in Multi-Modal Fingerprint Presentation Attack Detection: Evaluation

USC ISI VISTA Computer Vision 6 Feb 06, 2022
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 07, 2023
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022