MOT-Tracking-by-Detection-Pipeline - For Tracking-by-Detection format MOT (Multi Object Tracking), is it a framework that separates Detection and Tracking processes?

Overview

MOT-Tracking-by-Detection-Pipeline

Tracking-by-Detection形式のMOT(Multi Object Tracking)について、
DetectionとTrackingの処理を分離して寄せ集めたフレームワークです。



09.MOT.mp4

Usage

デモの実行方法は以下です。

python main.py
  • --device
    カメラデバイス番号の指定
    デフォルト:0
  • --movie
    動画ファイルの指定 ※指定時はカメラデバイスより優先
    デフォルト:指定なし
  • --detector
    Object Detectionのモデル選択
    yolox, efficientdet, ssd, centernet, nanodet, mediapipe_face, mediapipe_hand の何れかを指定
    デフォルト:yolox
  • --tracker
    トラッキングアルゴリズムの選択
    motpy, bytetrack, norfair の何れかを指定
    デフォルト:bytetrack

Direcotry

│  main.py
│  test.mp4
├─Detector
│  │  detector.py
│  └─xxxxxxxx
│      │  xxxxxxxx.py
│      │  config.json
│      │  LICENSE
│      └─model
│          xxxxxxxx.onnx
└─Tracker
    │  tracker.py
    └─yyyyyyyy
        │  yyyyyyyy.py
        │  config.json
        │  LICENSE
        └─tracker

各モデル、トラッキングアルゴリズムを格納しているディレクトリには、
ライセンス条項とコンフィグを同梱しています。

Detector

モデル名 取得元リポジトリ ライセンス 備考
YOLOX Megvii-BaseDetection/YOLOX Apache-2.0 YOLOX-ONNX-TFLite-Sampleにて
ONNX化したモデルを使用
EfficientDet tensorflow/models Apache-2.0 Object-Detection-API-TensorFlow2ONNXにて
ONNX化したモデルを使用
SSD MobileNet v2 FPNLite tensorflow/models Apache-2.0 Object-Detection-API-TensorFlow2ONNXにて
ONNX化したモデルを使用
CenterNet tensorflow/models Apache-2.0 Object-Detection-API-TensorFlow2ONNXにて
ONNX化したモデルを使用
NanoDet RangiLyu/nanodet Apache-2.0 NanoDet-ONNX-Sampleにて
ONNX化したモデルを使用
MediaPipe Face Detection google/mediapipe Apache-2.0 目、鼻、口、耳のキーポイントは未使用
MediaPipe Hands google/mediapipe Apache-2.0 ランドマークから外接矩形を算出し使用

Tracker

アルゴリズム名 取得元リポジトリ ライセンス 備考
motpy wmuron/motpy MIT マルチクラス対応
ByteTrack ifzhang/ByteTrack MIT -
Norfair tryolabs/norfair MIT -

Author

高橋かずひと(https://twitter.com/KzhtTkhs)

License

MOT-Tracking-by-Detection-Pipeline is under MIT License.

※MOT-Tracking-by-Detection-Pipelineのソースコード自体はMIT Licenseでの提供ですが、
各アルゴリズムのソースコードは、それぞれのライセンスに従います。
詳細は各ディレクトリ同梱のLICENSEファイルをご確認ください。

License(Movie)

サンプル動画はNHKクリエイティブ・ライブラリーイタリア ミラノの横断歩道を使用しています。

Owner
KazuhitoTakahashi
KazuhitoTakahashi
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

powerycy 40 Dec 14, 2022
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation

A Comprehensive Experimental Evaluation for Database Configuration Tuning This is the source code to the paper "Facilitating Database Tuning with Hype

DAIR Lab 9 Oct 29, 2022
The code of NeurIPS 2021 paper "Scalable Rule-Based Representation Learning for Interpretable Classification".

Rule-based Representation Learner This is a PyTorch implementation of Rule-based Representation Learner (RRL) as described in NeurIPS 2021 paper: Scal

Zhuo Wang 53 Dec 17, 2022
YuNetのPythonでのONNX、TensorFlow-Lite推論サンプル

YuNet-ONNX-TFLite-Sample YuNetのPythonでのONNX、TensorFlow-Lite推論サンプルです。 TensorFlow-LiteモデルはPINTO0309/PINTO_model_zoo/144_YuNetのものを使用しています。 Requirement Op

KazuhitoTakahashi 8 Nov 17, 2021
Using Tensorflow Object Detection API to detect Waymo open dataset

Waymo-2D-Object-Detection Using Tensorflow Object Detection API to detect Waymo open dataset Result CenterNet Training Loss SSD ResNet Training Loss C

76 Dec 12, 2022
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022
PRTR: Pose Recognition with Cascade Transformers

PRTR: Pose Recognition with Cascade Transformers Introduction This repository is the official implementation for Pose Recognition with Cascade Transfo

mlpc-ucsd 133 Dec 30, 2022
Histocartography is a framework bringing together AI and Digital Pathology

Documentation | Paper Welcome to the histocartography repository! histocartography is a python-based library designed to facilitate the development of

155 Nov 23, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
Ian Covert 130 Jan 01, 2023
Working demo of the Multi-class and Anomaly classification model using the CLIP feature space

👁️ Hindsight AI: Crime Classification With Clip About For Educational Purposes Only This is a recursive neural net trained to classify specific crime

Miles Tweed 2 Jun 05, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download

Bubbliiiing 31 Nov 25, 2022
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

Nikolai Kalischek 49 Oct 13, 2022
The Pytorch code of "Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification", CVPR 2022 (Oral).

DeepBDC for few-shot learning        Introduction In this repo, we provide the implementation of the following paper: "Joint Distribution Matters: Dee

FeiLong 116 Dec 19, 2022
Code for Robust Contrastive Learning against Noisy Views

Robust Contrastive Learning against Noisy Views This repository provides a PyTorch implementation of the Robust InfoNCE loss proposed in paper Robust

Ching-Yao Chuang 53 Jan 08, 2023
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022