Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

Related tags

Deep LearningCSRA
Overview

CSRA

This is the official code of ICCV 2021 paper:
Residual Attention: A Simple But Effective Method for Multi-Label Recoginition

attention

Demo, Train and Validation code have been released! (including VIT on Wider-Attribute)

This package is developed by Mr. Ke Zhu (http://www.lamda.nju.edu.cn/zhuk/) and we have just finished the implementation code of ViT models. If you have any question about the code, please feel free to contact Mr. Ke Zhu ([email protected]). The package is free for academic usage. You can run it at your own risk. For other purposes, please contact Prof. Jianxin Wu (mail to [email protected]).

Requirements

  • Python 3.7
  • pytorch 1.6
  • torchvision 0.7.0
  • pycocotools 2.0
  • tqdm 4.49.0, pillow 7.2.0

Dataset

We expect VOC2007, COCO2014 and Wider-Attribute dataset to have the following structure:

Dataset/
|-- VOCdevkit/
|---- VOC2007/
|------ JPEGImages/
|------ Annotations/
|------ ImageSets/
......
|-- COCO2014/
|---- annotations/
|---- images/
|------ train2014/
|------ val2014/
......
|-- WIDER/
|---- Annotations/
|------ wider_attribute_test.json/
|------ wider_attribute_trainval.json/
|---- Image/
|------ train/
|------ val/
|------ test/
...

Then directly run the following command to generate json file (for implementation) of these datasets.

python utils/prepare/voc.py  --data_path  Dataset/VOCdevkit
python utils/prepare/coco.py --data_path  Dataset/COCO2014
python utils/prepare/wider.py --data_path Dataset/WIDER

which will automatically result in json files in ./data/voc07, ./data/coco and ./data/wider

Demo

We provide prediction demos of our models. The demo images (picked from VCO2007) have already been put into ./utils/demo_images/, you can simply run demo.py by using our CSRA models pretrained on VOC2007:

CUDA_VISIBLE_DEVICES=0 python demo.py --model resnet101 --num_heads 1 --lam 0.1 --dataset voc07 --load_from OUR_VOC_PRETRAINED.pth --img_dir utils/demo_images

which will output like this:

utils/demo_images/000001.jpg prediction: dog,person,
utils/demo_images/000004.jpg prediction: car,
utils/demo_images/000002.jpg prediction: train,
...

Validation

We provide pretrained models on Google Drive for validation. ResNet101 trained on ImageNet with CutMix augmentation can be downloaded here.

Dataset Backbone Head nums mAP(%) Resolution Download
VOC2007 ResNet-101 1 94.7 448x448 download
VOC2007 ResNet-cut 1 95.2 448x448 download
COCO ResNet-101 4 83.3 448x448 download
COCO ResNet-cut 6 85.6 448x448 download
Wider VIT_B16_224 1 89.0 224x224 download
Wider VIT_L16_224 1 90.2 224x224 download

For voc2007, run the following validation example:

CUDA_VISIBLE_DEVICES=0 python val.py --num_heads 1 --lam 0.1 --dataset voc07 --num_cls 20  --load_from MODEL.pth

For coco2014, run the following validation example:

CUDA_VISIBLE_DEVICES=0 python val.py --num_heads 4 --lam 0.5 --dataset coco --num_cls 80  --load_from MODEL.pth

For wider attribute with ViT models, run the following

CUDA_VISIBLE_DEVICES=0 python val.py --model vit_B16_224 --img_size 224 --num_heads 1 --lam 0.3 --dataset wider --num_cls 14  --load_from ViT_B16_MODEL.pth
CUDA_VISIBLE_DEVICES=0 python val.py --model vit_L16_224 --img_size 224 --num_heads 1 --lam 0.3 --dataset wider --num_cls 14  --load_from ViT_L16_MODEL.pth

To provide pretrained VIT models on Wider-Attribute dataset, we retrain them recently, which has a slightly different performance (~0.1%mAP) from what has been presented in our paper. The structure of the VIT models is the initial VIT version (An image is worth 16x16 words: Transformers for image recognition at scale, link) and the implementation code of the VIT models is derived from http://github.com/rwightman/pytorch-image-models/.

Training

VOC2007

You can run either of these two lines below

CUDA_VISIBLE_DEVICES=0 python main.py --num_heads 1 --lam 0.1 --dataset voc07 --num_cls 20
CUDA_VISIBLE_DEVICES=0 python main.py --num_heads 1 --lam 0.1 --dataset voc07 --num_cls 20 --cutmix CutMix_ResNet101.pth

Note that the first command uses the Official ResNet-101 backbone while the second command uses the ResNet-101 pretrained on ImageNet with CutMix augmentation link (which is supposed to gain better performance).

MS-COCO

run the ResNet-101 with 4 heads

CUDA_VISIBLE_DEVICES=0 python main.py --num_heads 6 --lam 0.5 --dataset coco --num_cls 80

run the ResNet-101 (pretrained with CutMix) with 6 heads

CUDA_VISIBLE_DEVICES=0 python main.py --num_heads 6 --lam 0.4 --dataset coco --num_cls 80 --cutmix CutMix_ResNet101.pth

You can feel free to adjust the hyper-parameters such as number of attention heads (--num_heads), or the Lambda (--lam). Still, the default values of them in the above command are supposed to be the best.

Wider-Attribute

run the VIT_B16_224 with 1 heads

CUDA_VISIBLE_DEVICES=0 python main.py --model vit_B16_224 --img_size 224 --num_heads 1 --lam 0.3 --dataset wider --num_cls 14

run the VIT_L16_224 with 1 heads

CUDA_VISIBLE_DEVICES=0,1 python main.py --model vit_L16_224 --img_size 224 --num_heads 1 --lam 0.3 --dataset wider --num_cls 14

Note that the VIT_L16_224 model consume larger GPU space, so we use 2 GPUs to train them.

Notice

To avoid confusion, please note the 4 lines of code in Figure 1 (in paper) is only used in test stage (without training), which is our motivation. When our model is end-to-end training and testing, multi-head-attention (H=1, H=2, H=4, etc.) is used with different T values. Also, when H=1 and T=infty, the implementation code of multi-head-attention is exactly the same with Figure 1.

Acknowledgement

We thank Lin Sui (http://www.lamda.nju.edu.cn/suil/) for his initial contribution to this project.

CLEAR algorithm for multi-view data association

CLEAR: Consistent Lifting, Embedding, and Alignment Rectification Algorithm The Matlab, Python, and C++ implementation of the CLEAR algorithm, as desc

MIT Aerospace Controls Laboratory 30 Jan 02, 2023
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Implicit Behavioral Cloning This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper: Impl

Google Research 210 Dec 09, 2022
potpourri3d - An invigorating blend of 3D geometry tools in Python.

A Python library of various algorithms and utilities for 3D triangle meshes and point clouds. Managed by Nicholas Sharp, with new tools added lazily as needed. Currently, mainly bindings to C++ tools

Nicholas Sharp 295 Jan 05, 2023
Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection

SAGA Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection Please refer to the Jupyter notebook (Example.ipynb) for an example of using t

9 Dec 28, 2022
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Jiacheng Chen 106 Jan 06, 2023
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
Get a Grip! - A robotic system for remote clinical environments.

Get a Grip! Within clinical environments, sterilization is an essential procedure for disinfecting surgical and medical instruments. For our engineeri

Jay Sharma 1 Jan 05, 2022
Pytorch Implementation of "Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation"

CRL_EGPG Pytorch Implementation of Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation We use contrastive loss implemented b

YHR 25 Nov 14, 2022
BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构

BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构。 文档地址:https://basecls.readthedocs.io 安装 安装环境 BaseCls 需要 Python = 3.6。 BaseCls 依赖 M

MEGVII Research 28 Dec 23, 2022
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
Extension to fastai for volumetric medical data

FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari

Keno 26 Aug 22, 2022
Keras-retinanet - Keras implementation of RetinaNet object detection.

Keras RetinaNet Keras implementation of RetinaNet object detection as described in Focal Loss for Dense Object Detection by Tsung-Yi Lin, Priya Goyal,

Fizyr 4.3k Jan 01, 2023
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images [ICCV 2021] © Mahmood Lab - This code is made avail

Mahmood Lab @ Harvard/BWH 63 Dec 01, 2022
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Happywhale - Whale and Dolphin Identification Silver🥈 Solution (26/1588)

Kaggle-Happywhale Happywhale - Whale and Dolphin Identification Silver 🥈 Solution (26/1588) 竞赛方案思路 图像数据预处理-标志性特征图片裁剪:首先根据开源的标注数据训练YOLOv5x6目标检测模型,将训练集

Franxx 20 Nov 14, 2022
render sprites into your desktop environment as shaped windows using GTK

spritegtk render static or animated sprites into your desktop environment as dynamic shaped windows using GTK requires pycairo and PYGobject: pip inst

hermit 20 Oct 27, 2022