Stock-history-display - something like a easy yearly review for your stock performance

Overview

Stock History Display

Available on Heroku: https://stock-history-display.herokuapp.com/

The purpose

The purpose of this project is something an easy yearly review tool for your stock performance. This app will help you get a very quick and clear view of your past invesment, about whether you earn or loss, about how much you earn and loss, about when you buy-in and sell-out, about the volume in related buy/sell threade. We both know it's pretty annoying to review your Robinhood history long list and it's not clear at all.

By the help of this app, users will be able to have a better view from their past investment, and also get some feedback from it. This is super important in improving future stock market performance.

Sample result

System Structure

Steps

  • Step 1: Input stock abbreviation: By default, it is TSLA, which is the abbreviation of TESLA
  • Step 2: Copy and paste buy/sell histories from Robinhood history page, make sure you follow the format,
  • Step 3: (Optional) Choose a period: 1 year or 5 year. Also, you can choose a filter which could filter out small profit line to reduce distraction, default = 10.
  • Step 4: Click submit, then you should see buy/sell history picture attached to your stock line chart as below

Current Feature

  • Tech Stacks: Python, Flask, Html, JSON, Docker, Heroku
  • fetch Stock data from Yahoo Finance API
  • persist Stock data as file to reduce duplicated Yahoo Finance API request
  • parse history data: the personal operations history, like when you make a buy-in or sell-out transaction, this will add a datapoint into history. This app support parse data from history following Robinhood history page format. You may paste history from Robinhood history page.
  • bypass browser cache by random number naming
  • support parsing complicated transactions and generating simple buy or sell threads.
  • clear green and red view for earn and loss. 4K very high definition picture.

TODO

  • could not parse "split" in history
  • some bugs when parsing Nvidia data
  • try to improve definition to 4k
  • add this one to google sheet auto request
  • beautify the code
  • add title, introduction and github links into web app Metrics:
  • display total profit from the stock
  • display total transactions in this stock
  • max, avg, min hold days
  • max, avg, min profit statistics regarding the thread transactions

Future

  • Redis Cache
  • MySQL storage
  • support personal accounts, and support google login in
  • better de-deplicate mechanism, potentially using hash, SHA256
  • scale by different time length, year, month, day, etc
  • a better system design
  • beautify UI by Bootstrap

Reference

Owner
LiaoJJ
Actively seeking for a Software Engineer New Grad opportunities
LiaoJJ
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

traiNNer traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation to

202 Jan 04, 2023
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
Cl datasets - PyTorch image dataloaders and utility functions to load datasets for supervised continual learning

Continual learning datasets Introduction This repository contains PyTorch image

berjaoui 5 Aug 28, 2022
[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning

Incremental Object Detection via Meta-Learning To appear in an upcoming issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T

Joseph K J 66 Jan 04, 2023
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
A PyTorch implementation of QANet.

QANet-pytorch NOTICE I'm very busy these months. I'll return to this repo in about 10 days. Introduction An implementation of QANet with PyTorch. Any

H. Z. 343 Nov 03, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Learned Token Pruning for Transformers

LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H

Sehoon Kim 52 Dec 29, 2022
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Myeongjun Kim 52 Jan 07, 2023
PyTorch implementation of Trust Region Policy Optimization

PyTorch implementation of TRPO Try my implementation of PPO (aka newer better variant of TRPO), unless you need to you TRPO for some specific reasons.

Ilya Kostrikov 366 Nov 15, 2022
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
Codes for NeurIPS 2021 paper "Adversarial Neuron Pruning Purifies Backdoored Deep Models"

Adversarial Neuron Pruning Purifies Backdoored Deep Models Code for NeurIPS 2021 "Adversarial Neuron Pruning Purifies Backdoored Deep Models" by Dongx

Dongxian Wu 31 Dec 11, 2022
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers This repository contains code to run experiments in the paper "Signal Stre

0 Jan 19, 2022