Stock-history-display - something like a easy yearly review for your stock performance

Overview

Stock History Display

Available on Heroku: https://stock-history-display.herokuapp.com/

The purpose

The purpose of this project is something an easy yearly review tool for your stock performance. This app will help you get a very quick and clear view of your past invesment, about whether you earn or loss, about how much you earn and loss, about when you buy-in and sell-out, about the volume in related buy/sell threade. We both know it's pretty annoying to review your Robinhood history long list and it's not clear at all.

By the help of this app, users will be able to have a better view from their past investment, and also get some feedback from it. This is super important in improving future stock market performance.

Sample result

System Structure

Steps

  • Step 1: Input stock abbreviation: By default, it is TSLA, which is the abbreviation of TESLA
  • Step 2: Copy and paste buy/sell histories from Robinhood history page, make sure you follow the format,
  • Step 3: (Optional) Choose a period: 1 year or 5 year. Also, you can choose a filter which could filter out small profit line to reduce distraction, default = 10.
  • Step 4: Click submit, then you should see buy/sell history picture attached to your stock line chart as below

Current Feature

  • Tech Stacks: Python, Flask, Html, JSON, Docker, Heroku
  • fetch Stock data from Yahoo Finance API
  • persist Stock data as file to reduce duplicated Yahoo Finance API request
  • parse history data: the personal operations history, like when you make a buy-in or sell-out transaction, this will add a datapoint into history. This app support parse data from history following Robinhood history page format. You may paste history from Robinhood history page.
  • bypass browser cache by random number naming
  • support parsing complicated transactions and generating simple buy or sell threads.
  • clear green and red view for earn and loss. 4K very high definition picture.

TODO

  • could not parse "split" in history
  • some bugs when parsing Nvidia data
  • try to improve definition to 4k
  • add this one to google sheet auto request
  • beautify the code
  • add title, introduction and github links into web app Metrics:
  • display total profit from the stock
  • display total transactions in this stock
  • max, avg, min hold days
  • max, avg, min profit statistics regarding the thread transactions

Future

  • Redis Cache
  • MySQL storage
  • support personal accounts, and support google login in
  • better de-deplicate mechanism, potentially using hash, SHA256
  • scale by different time length, year, month, day, etc
  • a better system design
  • beautify UI by Bootstrap

Reference

Owner
LiaoJJ
Actively seeking for a Software Engineer New Grad opportunities
LiaoJJ
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation

Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation Paper Multi-Target Adversarial Frameworks for Domain Adaptation in

Valeo.ai 20 Jun 21, 2022
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction

DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction This is the implementation of DeepSTD in

5 Sep 26, 2022
Make differentially private training of transformers easy for everyone

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
A code generator from ONNX to PyTorch code

onnx-pytorch Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1. Installation From PyPI pip install onnx-pytorch From

Wenhao Hu 94 Jan 06, 2023
Implementation of paper "DeepTag: A General Framework for Fiducial Marker Design and Detection"

Implementation of paper DeepTag: A General Framework for Fiducial Marker Design and Detection. Project page: https://herohuyongtao.github.io/research/

Yongtao Hu 46 Dec 12, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks

AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con

mario 124 Sep 16, 2022
A task Provided by A respective Artenal Ai and Ml based Company to complete it

A task Provided by A respective Alternal Ai and Ml based Company to complete it .

Parth Madan 1 Jan 25, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
Codebase for Diffusion Models Beat GANS on Image Synthesis.

Codebase for Diffusion Models Beat GANS on Image Synthesis.

Katherine Crowson 128 Dec 02, 2022
Build Low Code Automated Tensorflow, What-IF explainable models in just 3 lines of code.

Build Low Code Automated Tensorflow explainable models in just 3 lines of code.

Hasan Rafiq 170 Dec 26, 2022
Repo 4 basic seminar §How to make human machine readable"

WORK IN PROGRESS... Notebooks from the Seminar: Human Machine Readable WS21/22 Introduction into programming Georg Trogemann, Christian Heck, Mattis

experimental-informatics 3 May 29, 2022
Official implementation of the ICML2021 paper "Elastic Graph Neural Networks"

ElasticGNN This repository includes the official implementation of ElasticGNN in the paper "Elastic Graph Neural Networks" [ICML 2021]. Xiaorui Liu, W

liuxiaorui 34 Dec 04, 2022