Unified learning approach for egocentric hand gesture recognition and fingertip detection

Overview

Unified Gesture Recognition and Fingertip Detection

A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and fingertip detection at the same time. The proposed algorithm uses a single network to predict both finger class probabilities for classification and fingertips positional output for regression in one evaluation. From the finger class probabilities, the gesture is recognized, and using both of the information fingertips are localized. Instead of directly regressing the fingertips position from the fully connected (FC) layer of the CNN, we regress the ensemble of fingertips position from a fully convolutional network (FCN) and subsequently take ensemble average to regress the final fingertips positional output.

Update

Included robust real-time hand detection using yolo for better smooth performance in the first stage of the detection system and most of the code has been cleaned and restructured for ease of use. To get the previous versions, please visit the release section.

GitHub stars GitHub forks GitHub issues Version GitHub license

Requirements

  • TensorFlow-GPU==2.2.0
  • OpenCV==4.2.0
  • ImgAug==0.2.6
  • Weights: Download the pre-trained weights files of the unified gesture recognition and fingertip detection model and put the weights folder in the working directory.

Downloads Downloads

The weights folder contains three weights files. The fingertip.h5 is for unified gesture recignition and finertiop detection. yolo.h5 and solo.h5 are for the yolo and solo method of hand detection. (what is solo?)

Paper

Paper Paper

To get more information about the proposed method and experiments, please go through the paper. Cite the paper as:

@article{alam2021unified,
title = {Unified learning approach for egocentric hand gesture recognition and fingertip detection},
author={Alam, Mohammad Mahmudul and Islam, Mohammad Tariqul and Rahman, SM Mahbubur},
journal = {Pattern Recognition},
volume = {121},
pages = {108200},
year = {2021},
publisher={Elsevier},
}

Dataset

The proposed gesture recognition and fingertip detection model is trained by employing Scut-Ego-Gesture Dataset which has a total of eleven different single hand gesture datasets. Among the eleven different gesture datasets, eight of them are considered for experimentation. A detailed explanation about the partition of the dataset along with the list of the images used in the training, validation, and the test set is provided in the dataset/ folder.

Network Architecture

To implement the algorithm, the following network architecture is proposed where a single CNN is utilized for both hand gesture recognition and fingertip detection.

Prediction

To get the prediction on a single image run the predict.py file. It will run the prediction in the sample image stored in the data/ folder. Here is the output for the sample.jpg image.

Real-Time!

To run in real-time simply clone the repository and download the weights file and then run the real-time.py file.

directory > python real-time.py

In real-time execution, there are two stages. In the first stage, the hand can be detected by using either you only look once (yolo) or single object localization (solo) algorithm. By default, yolo will be used here. The detected hand portion is then cropped and fed to the second stage for gesture recognition and fingertip detection.

Output

Here is the output of the unified gesture recognition and fingertip detection model for all of the 8 classes of the dataset where not only each fingertip is detected but also each finger is classified.

Comments
  • Datasets

    Datasets

    Hello, I have a question about the dataset from your readme, I can't download the Scut-Ego-Gesture Dataset ,Because in China, this website has been banned. Can you share it with me in other ways? For example, Google or QQ email: [email protected]

    opened by CVUsers 10
  • how to download the weights, code not contain?

    how to download the weights, code not contain?

    The weights folder contains three weights files. The comparison.h5 is for first five classes and performance.h5 is for first eight classes. solo.h5 is for hand detection. but no link

    opened by mmxuan18 6
  • OSError: Unable to open file (unable to open file: name = 'yolo.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)

    OSError: Unable to open file (unable to open file: name = 'yolo.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)

    I use the Mac Os to run thereal-time.py file, and get the OSError, I also search on Google to find others' the same problem. It is probably the Keras problem. But I do not how to solve it

    opened by Hanswanglin 4
  • OSError: Unable to open file (unable to open file: name = 'weights/performance.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)

    OSError: Unable to open file (unable to open file: name = 'weights/performance.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)

    File "h5py/_objects.pyx", line 54, in h5py._objects.with_phil.wrapper File "h5py/_objects.pyx", line 55, in h5py._objects.with_phil.wrapper File "h5py/h5f.pyx", line 88, in h5py.h5f.open OSError: Unable to open file (unable to open file: name = 'weights/performance.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)

    opened by Jasonmes 2
  • left hand?

    left hand?

    Hi, first it's really cool work!

    Is the left hand included in the training images? I have been playing around with some of my own images and it seems that it doesn't really recognize the left hand in a palm-down position...

    If I want to include the left hand, do you think it would be possible if I train the network with the image flipped?

    opened by myhjiang 1
  • why are there two hand detection provided?

    why are there two hand detection provided?

    A wonderful work!!As mentioned above, the Yolo and Solo detection models are provided. I wonder what is the advatange of each model comparing to the other and what is the dataset to train the detect.

    opened by DanielMao2015 1
  • Difference of classes5.h5 and classes8.h5

    Difference of classes5.h5 and classes8.h5

    Hi, May i know the difference when training classes5 and classes8? are the difference from the dataset used for training by excluding SingleSix, SingleSeven, SingleEight or there are other modification such as changing the model structure or parameters?

    Thanks

    opened by danieltanimanuel 1
  • Using old versions of tensorflow, can't install the dependencies on my macbook and with newer versions it's constatly failing.

    Using old versions of tensorflow, can't install the dependencies on my macbook and with newer versions it's constatly failing.

    When trying to install the required version of tensorflow:

    pip3 install tensorflow==1.15.0
    ERROR: Could not find a version that satisfies the requirement tensorflow==1.15.0 (from versions: 2.2.0rc3, 2.2.0rc4, 2.2.0, 2.2.1, 2.2.2, 2.3.0rc0, 2.3.0rc1, 2.3.0rc2, 2.3.0, 2.3.1, 2.3.2, 2.4.0rc0, 2.4.0rc1, 2.4.0rc2, 2.4.0rc3, 2.4.0rc4, 2.4.0, 2.4.1)
    ERROR: No matching distribution found for tensorflow==1.15.0
    

    I even tried downloading the .whl file from the pypi and try manually installing it, but that didn't work too:

    pip3 install ~/Downloads/tensorflow-1.15.0-cp37-cp37m-macosx_10_11_x86_64.whl
    ERROR: tensorflow-1.15.0-cp37-cp37m-macosx_10_11_x86_64.whl is not a supported wheel on this platform.
    

    Tried with both python3.6 and python3.8

    So it would be great to update the dependencies :)

    opened by KoStard 1
  • Custom Model keyword arguments Error

    Custom Model keyword arguments Error

    Change model = Model(input=model.input, outputs=[probability, position]) to model = Model(inputs=model.input, outputs=[probability, position]) on line 22 of net/network.py

    opened by Rohit-Jain-2801 1
  • Problem of weights

    Problem of weights

    Hi,when load the solo.h5(In solo.py line 14:"self.model.load_weights(weights)") it will report errors: Process finished with exit code -1073741819 (0xC0000005) keras2.2.5+tensorflow1.14.0+cuda10.0

    opened by MC-E 1
Releases(v2.0)
Owner
Mohammad
Machine Learning | Graduate Research Assistant at CORAL Lab
Mohammad
A implemetation of the LRCN in mxnet

A implemetation of the LRCN in mxnet ##Abstract LRCN is a combination of CNN and RNN ##Installation Download UCF101 dataset ./avi2jpg.sh to split the

44 Aug 25, 2022
IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID,

Intermediate Domain Module (IDM) This repository is the official implementation for IDM: An Intermediate Domain Module for Domain Adaptive Person Re-I

Yongxing Dai 87 Nov 22, 2022
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

This is the official repository of the paper: CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability A private copy of the

Fadi Boutros 33 Dec 31, 2022
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022
This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021.

SG2HOI This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021. Installation Pytorch 1.7

HT 10 Dec 20, 2022
FS-Mol: A Few-Shot Learning Dataset of Molecules

FS-Mol is A Few-Shot Learning Dataset of Molecules, containing molecular compounds with measurements of activity against a variety of protein targets. The dataset is presented with a model evaluation

Microsoft 114 Dec 15, 2022
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation

AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti

Hao Tang 530 Dec 27, 2022
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

FaceAPI AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using

Vladimir Mandic 395 Dec 29, 2022
Autonomous racing with the Anki Overdrive

Anki Autonomous Racing Autonomous racing with the Anki Overdrive. Using the Overdrive-Python API (https://github.com/xerodotc/overdrive-python) develo

3 Dec 11, 2022
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Facebook Research 281 Dec 22, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)

DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You

yun_yang 192 Dec 12, 2022
Age Progression/Regression by Conditional Adversarial Autoencoder

Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE) TensorFlow implementation of the algorithm in the paper Age Progression/Regre

Zhifei Zhang 603 Dec 22, 2022
This program will stylize your photos with fast neural style transfer.

Neural Style Transfer (NST) Using TensorFlow Demo TensorFlow TensorFlow is an end-to-end open source platform for machine learning. It has a comprehen

Ismail Boularbah 1 Aug 08, 2022
Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor

yifan 10 Oct 18, 2022
HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton

HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton Wencan Cheng, Jae Hyun Park, Jong

cwc1260 23 Oct 21, 2022
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023