Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Overview

Tacotron 2 (without wavenet)

PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions.

This implementation includes distributed and automatic mixed precision support and uses the LJSpeech dataset.

Distributed and Automatic Mixed Precision support relies on NVIDIA's Apex and AMP.

Visit our website for audio samples using our published Tacotron 2 and WaveGlow models.

Alignment, Predicted Mel Spectrogram, Target Mel Spectrogram

Pre-requisites

  1. NVIDIA GPU + CUDA cuDNN

Setup

  1. Download and extract the LJ Speech dataset
  2. Clone this repo: git clone https://github.com/NVIDIA/tacotron2.git
  3. CD into this repo: cd tacotron2
  4. Initialize submodule: git submodule init; git submodule update
  5. Update .wav paths: sed -i -- 's,DUMMY,ljs_dataset_folder/wavs,g' filelists/*.txt
    • Alternatively, set load_mel_from_disk=True in hparams.py and update mel-spectrogram paths
  6. Install PyTorch 1.0
  7. Install Apex
  8. Install python requirements or build docker image
    • Install python requirements: pip install -r requirements.txt

Training

  1. python train.py --output_directory=outdir --log_directory=logdir
  2. (OPTIONAL) tensorboard --logdir=outdir/logdir

Training using a pre-trained model

Training using a pre-trained model can lead to faster convergence
By default, the dataset dependent text embedding layers are ignored

  1. Download our published Tacotron 2 model
  2. python train.py --output_directory=outdir --log_directory=logdir -c tacotron2_statedict.pt --warm_start

Multi-GPU (distributed) and Automatic Mixed Precision Training

  1. python -m multiproc train.py --output_directory=outdir --log_directory=logdir --hparams=distributed_run=True,fp16_run=True

Inference demo

  1. Download our published Tacotron 2 model
  2. Download our published WaveGlow model
  3. jupyter notebook --ip=127.0.0.1 --port=31337
  4. Load inference.ipynb

N.b. When performing Mel-Spectrogram to Audio synthesis, make sure Tacotron 2 and the Mel decoder were trained on the same mel-spectrogram representation.

Related repos

WaveGlow Faster than real time Flow-based Generative Network for Speech Synthesis

nv-wavenet Faster than real time WaveNet.

Acknowledgements

This implementation uses code from the following repos: Keith Ito, Prem Seetharaman as described in our code.

We are inspired by Ryuchi Yamamoto's Tacotron PyTorch implementation.

We are thankful to the Tacotron 2 paper authors, specially Jonathan Shen, Yuxuan Wang and Zongheng Yang.

Owner
NVIDIA Corporation
NVIDIA Corporation
Training PyTorch models with differential privacy

Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the cli

1.3k Dec 29, 2022
A simple way to train and use PyTorch models with multi-GPU, TPU, mixed-precision

🤗 Accelerate was created for PyTorch users who like to write the training loop of PyTorch models but are reluctant to write and maintain the boilerplate code needed to use multi-GPUs/TPU/fp16.

Hugging Face 3.5k Jan 08, 2023
PyTorch implementations of normalizing flow and its variants.

PyTorch implementations of normalizing flow and its variants.

Tatsuya Yatagawa 55 Dec 01, 2022
Pytorch bindings for Fortran

Pytorch bindings for Fortran

Dmitry Alexeev 46 Dec 29, 2022
Implementation of LambdaNetworks, a new approach to image recognition that reaches SOTA with less compute

Lambda Networks - Pytorch Implementation of λ Networks, a new approach to image recognition that reaches SOTA on ImageNet. The new method utilizes λ l

Phil Wang 1.5k Jan 07, 2023
Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

HNLP 1.1k Jan 07, 2023
A PyTorch implementation of EfficientNet

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch

Torchmeta A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch. Torchmeta contains popular meta-learning bench

Tristan Deleu 1.7k Jan 06, 2023
A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.

A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.

878 Dec 30, 2022
Bunch of optimizer implementations in PyTorch

Bunch of optimizer implementations in PyTorch

Hyeongchan Kim 76 Jan 03, 2023
This is an differentiable pytorch implementation of SIFT patch descriptor.

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
Kaldi-compatible feature extraction with PyTorch, supporting CUDA, batch processing, chunk processing, and autograd

Kaldi-compatible feature extraction with PyTorch, supporting CUDA, batch processing, chunk processing, and autograd

Fangjun Kuang 119 Jan 03, 2023
A lightweight wrapper for PyTorch that provides a simple declarative API for context switching between devices, distributed modes, mixed-precision, and PyTorch extensions.

A lightweight wrapper for PyTorch that provides a simple declarative API for context switching between devices, distributed modes, mixed-precision, and PyTorch extensions.

Fidelity Investments 56 Sep 13, 2022
A code copied from google-research which named motion-imitation was rewrited with PyTorch

motor-system Introduction A code copied from google-research which named motion-imitation was rewrited with PyTorch. More details can get from this pr

NewEra 6 Jan 08, 2022
Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and Layer Input Masking"

model_based_energy_constrained_compression Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and

Haichuan Yang 16 Jun 15, 2022
Pretrained ConvNets for pytorch: NASNet, ResNeXt, ResNet, InceptionV4, InceptionResnetV2, Xception, DPN, etc.

Pretrained models for Pytorch (Work in progress) The goal of this repo is: to help to reproduce research papers results (transfer learning setups for

Remi 8.7k Dec 31, 2022
Code snippets created for the PyTorch discussion board

PyTorch misc Collection of code snippets I've written for the PyTorch discussion board. All scripts were testes using the PyTorch 1.0 preview and torc

461 Dec 26, 2022
A few Windows specific scripts for PyTorch

It is a repo that contains scripts that makes using PyTorch on Windows easier. Easy Installation Update: Starting from 0.4.0, you can go to the offici

408 Dec 15, 2022
Reformer, the efficient Transformer, in Pytorch

Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH

Phil Wang 1.8k Jan 06, 2023
PyTorch framework A simple and complete framework for PyTorch, providing a variety of data loading and simple task solutions that are easy to extend and migrate

PyTorch framework A simple and complete framework for PyTorch, providing a variety of data loading and simple task solutions that are easy to extend and migrate

Cong Cai 12 Dec 19, 2021