Tutorial for surrogate gradient learning in spiking neural networks

Overview

SpyTorch

A tutorial on surrogate gradient learning in spiking neural networks

Version: 0.4

DOI

This repository contains tutorial files to get you started with the basic ideas of surrogate gradient learning in spiking neural networks using PyTorch.

You find a brief introductory video accompanying these notebooks here https://youtu.be/xPYiAjceAqU

Feedback and contributions are welcome.

For more information on surrogate gradient learning please refer to:

Neftci, E.O., Mostafa, H., and Zenke, F. (2019). Surrogate Gradient Learning in Spiking Neural Networks: Bringing the Power of Gradient-based optimization to spiking neural networks. IEEE Signal Processing Magazine 36, 51–63. https://ieeexplore.ieee.org/document/8891809 preprint: https://arxiv.org/abs/1901.09948

Also see https://github.com/surrogate-gradient-learning

Copyright and license

Copyright 2019-2020 Friedemann Zenke, https://fzenke.net

This work is licensed under a Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/

Comments
  • resetting with

    resetting with "out" instead of "rst"?

    • This is a comment, not an issue *

    Hi Friedemann, First of thanks a lot for these great tutorials, I've enjoyed a lot playing with them, and I've learned a lot :-) One question: in the run_snn function, why do you bother constructing the "rst" tensor? Why don't you subtract the "out" tensor, which also contains the output spikes? I've tried, and it seems to work. Just curious. Best,

    Tim

    question 
    opened by tmasquelier 8
  • Problem in SpyTorchTutorial2

    Problem in SpyTorchTutorial2

    Hello,

    It was a very nice and interesting tutorial, thank you for preparing it...

    tutorial1 haven't any problem, but in tutorial 2, some dtype problems occurred... after their fixation, training process was very slow on GTX 980 (I've run on this config some very deep model)... could you please explain your config, and also training time and response time?

    opened by ghost 6
  • Spike times shifted

    Spike times shifted

    I have the impression that the spike recordings are shifted one time step in all tutorials. Could you maybe check if this is indeed the case?

    From my understanding, time step 0 is recorded twice for the spikes, once during initialisation

      mem = torch.zeros((batch_size, nb_hidden), device=device, dtype=dtype)
      spk_rec = [mem]
    

    and once within the simulation of time step 0:

      for t in range(nb_steps):
          mthr = mem-1.0
          out = spike_fn(mthr)
          ...
          spk_rec.append(out)
    

    As a result the indeces appear shifted when comparing

    print(torch.nonzero((mem_rec-1.0) > 0.0))
    print(torch.nonzero(spk_rec))
    

    Thanks, Simon

    opened by smonsays 4
  • Software/Machine description available?

    Software/Machine description available?

    Hey Friedemann,

    thanks for making the examples available, they look very helpful. However, to make them fully reproducible I think that some additional information regarding the "technical dependencies" is needed.

    In particular, the list of used software packages (incl. version and build variant information) plus some specification about the machine hardware (CPU arch, GPUs).

    Preferably, the former could be expressed as a recipe for constructing a container (Dockerfile, or for better HPC-compatibility, a Singularity recipe), maybe even using an explicitly versioning package manager like spack.

    Cheers, Eric

    opened by muffgaga 3
  • Dataset never decompressed

    Dataset never decompressed

    Hello,

    I belive I ran into a possible issue here. Due to line 37 the evaluation in line 38 will always be false if one hasnt already got the uncompressed dataset.

    https://github.com/fzenke/spytorch/blob/9e91eceaf53f17be9e95a3743164224bdbb086bb/notebooks/utils.py#L35-L42

    If I change line 37 to: hdf5_file_path = gz_file_path[:-3] This works for me.

    Best, Aaron

    opened by AaronSpieler 1
  • propagation delay

    propagation delay

    Hi zenke, I have a question about the snn model. If I feed a spike image to a snn with L layers at time step n, the output of the last layer will be affected by the input at time step n + L - 1. In deep networks, the delay should be considered, because it will increase the whole time steps. Screen Shot 2021-12-15 at 4 50 45 PM

    opened by yizx6 1
  • Compute recurrent contribution from spikes

    Compute recurrent contribution from spikes

    Hey Friedemann,

    thank you for the very comprehensive tutorial! I have a question on the way the recurrence is computed in tutorial 4. If I understand the equation for the dynamics of the current correctly, the recurrence should be computed with the spiking neuron state:

    mthr = mem-1.0
    out = spike_fn(mthr)
    h1 = h1_from_input[:,t] + torch.einsum("ab,bc->ac", (out, v1))
    

    Instead in tutorial 4, a separate hidden state is kept, that ignores the spike function:

    h1 = h1_from_input[:,t] + torch.einsum("ab,bc->ac", (h1, v1))
    

    Is this done deliberately? Judging from simulating a few epochs, the two versions seem to perform similarly.

    Thank you,

    Simon

    opened by smonsays 1
  • maybe simplification

    maybe simplification

    I don't understand why the 'rst' variable exists. It seems to always be == 'out'. Changing to rst = out yields same results...

    def spike_fn(x):
        out = torch.zeros_like(x)
        out[x > 0] = 1.0
        return out
    ...
    # Here we loop over time
    for t in range(nb_steps):
        mthr = mem-1.0
        out = spike_fn(mthr) 
        rst = torch.zeros_like(mem)
        c = (mthr > 0)
        rst[c] = torch.ones_like(mem)[c] 
    
    opened by colinator 1
  • Issue in running Tutorial-4

    Issue in running Tutorial-4

    When I am running the following piece of code in Tutorial-4:

    loss_hist = train(x_train, y_train, lr=2e-4, nb_epochs=nb_epochs)

    I am getting the following error: pic3

    Can you please suggest me how to resolve this issue?

    opened by paglabhola 0
Releases(v0.3)
Owner
Friedemann Zenke
Friedemann Zenke
A few Windows specific scripts for PyTorch

It is a repo that contains scripts that makes using PyTorch on Windows easier. Easy Installation Update: Starting from 0.4.0, you can go to the offici

408 Dec 15, 2022
Learning Sparse Neural Networks through L0 regularization

Example implementation of the L0 regularization method described at Learning Sparse Neural Networks through L0 regularization, Christos Louizos, Max W

AMLAB 202 Nov 10, 2022
Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and Layer Input Masking"

model_based_energy_constrained_compression Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and

Haichuan Yang 16 Jun 15, 2022
Pytorch implementation of Distributed Proximal Policy Optimization

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 164 Jan 05, 2023
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
Implementation of LambdaNetworks, a new approach to image recognition that reaches SOTA with less compute

Lambda Networks - Pytorch Implementation of λ Networks, a new approach to image recognition that reaches SOTA on ImageNet. The new method utilizes λ l

Phil Wang 1.5k Jan 07, 2023
An optimizer that trains as fast as Adam and as good as SGD.

AdaBound An optimizer that trains as fast as Adam and as good as SGD, for developing state-of-the-art deep learning models on a wide variety of popula

LoLo 2.9k Dec 27, 2022
A pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch.

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
PyTorch wrappers for using your model in audacity!

PyTorch wrappers for using your model in audacity!

130 Dec 14, 2022
Training RNNs as Fast as CNNs (https://arxiv.org/abs/1709.02755)

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

ASAPP Research 2.1k Jan 01, 2023
Tutorial for surrogate gradient learning in spiking neural networks

SpyTorch A tutorial on surrogate gradient learning in spiking neural networks Version: 0.4 This repository contains tutorial files to get you started

Friedemann Zenke 203 Nov 28, 2022
Training PyTorch models with differential privacy

Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the cli

1.3k Dec 29, 2022
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
Unofficial PyTorch implementation of DeepMind's Perceiver IO with PyTorch Lightning scripts for distributed training

Unofficial PyTorch implementation of DeepMind's Perceiver IO with PyTorch Lightning scripts for distributed training

Martin Krasser 251 Dec 25, 2022
Riemannian Adaptive Optimization Methods with pytorch optim

geoopt Manifold aware pytorch.optim. Unofficial implementation for “Riemannian Adaptive Optimization Methods” ICLR2019 and more. Installation Make sur

642 Jan 03, 2023
A tiny package to compare two neural networks in PyTorch

Compare neural networks by their feature similarity

Anand Krishnamoorthy 180 Dec 30, 2022
270 Dec 24, 2022
Differentiable SDE solvers with GPU support and efficient sensitivity analysis.

PyTorch Implementation of Differentiable SDE Solvers This library provides stochastic differential equation (SDE) solvers with GPU support and efficie

Google Research 1.2k Jan 04, 2023
PyTorch implementations of normalizing flow and its variants.

PyTorch implementations of normalizing flow and its variants.

Tatsuya Yatagawa 55 Dec 01, 2022