A library to generate synthetic time series data by easy-to-use factors and generator

Overview

timeseries-generator

This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_generator) and demo notebooks on how to generate synthetic timeseries data (under /examples). The goal here is to have non-sensitive data available to demo solutions and test the effectiveness of those solutions and/or algorithms. In order to test your algorithm, you want to have time series available containing different kinds of trends. The python package should help create different kinds of time series while still being maintainable.

timeseries_generator package

For this package, it is assumed that a time series is composed of a base value multiplied by many factors.

ts = base_value * factor1 * factor2 * ... * factorN + Noiser

Diagram

These factors can be anything, random noise, linear trends, to seasonality. The factors can affect different features. For example, some features in your time series may have a seasonal component, while others do not.

Different factors are represented in different classes, which inherit from the BaseFactor class. Factor classes are input for the Generator class, which creates a dataframe containing the features, base value, all the different factors working on the base value and and the final factor and value.

Core concept

  • Generator: a python class to generate the time series. A generator contains a list of factors and noiser. By overlaying the factors and noiser, generator can produce a customized time series
  • Factor: a python class to generate the trend, seasonality, holiday factors, etc. Factors take effect by multiplying on the base value of the generator.
  • Noised: a python class to generate time series noise data. Noiser take effect by summing on top of "factorized" time series. This formula describes the concepts we talk above

Built-in Factors

  • LinearTrend: give a linear trend based on the input slope and intercept
  • CountryYearlyTrend: give a yearly-based market cap factor based on the GDP per - capita.
  • EUEcoTrendComponents: give a monthly changed factor based on EU industry product public data
  • HolidayTrendComponents: simulate the holiday sale peak. It adapts the holiday days - differently in different country
  • BlackFridaySaleComponents: simulate the BlackFriday sale event
  • WeekendTrendComponents: more sales at weekends than on weekdays
  • FeatureRandFactorComponents: set up different sale amount for different stores and different product
  • ProductSeasonTrendComponents: simulate season-sensitive product sales. In this example code, we have 3 different types of product:
    • winter jacket: inverse-proportional to the temperature, more sales in winter
    • basketball top: proportional to the temperature, more sales in summer
    • Yoga Mat: temperature insensitive

Installation

pip install timeseries-generator

Usage

from timeseries_generator import LinearTrend, Generator, WhiteNoise, RandomFeatureFactor
import pandas as pd

# setting up a linear tren
lt = LinearTrend(coef=2.0, offset=1., col_name="my_linear_trend")
g = Generator(factors={lt}, features=None, date_range=pd.date_range(start="01-01-2020", end="01-20-2020"))
g.generate()
g.plot()

# update by adding some white noise to the generator
wn = WhiteNoise(stdev_factor=0.05)
g.update_factor(wn)
g.generate()
g.plot()

Example Notebooks

We currently have 2 example notebooks available:

  1. generate_stationary_process: Good for introducing the basics of the timeseries_generator. Shows how to apply simple linear trends and how to introduce features and labels, as well as random noise.
  2. use_external_factors: Goes more into detail and shows how to use the external_factors submodule. Shows how to create seasonal trends.

Web based prototyping UI

We also use Streamlit to build a web-based UI to demonstrate how to use this package to generate synthesis time series data in an interactive web UI.

streamlit run examples/streamlit/app.py

Web UI

License

This package is released under the Apache License, Version 2.0

You might also like...
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

Visualize classified time series data with interactive Sankey plots in Google Earth Engine
Visualize classified time series data with interactive Sankey plots in Google Earth Engine

sankee Visualize changes in classified time series data with interactive Sankey plots in Google Earth Engine Contents Description Installation Using P

PyPOTS - A Python Toolbox for Data Mining on Partially-Observed Time Series

A python toolbox/library for data mining on partially-observed time series, supporting tasks of forecasting/imputation/classification/clustering on incomplete multivariate time series with missing values.

A collection of Scikit-Learn compatible time series transformers and tools.
A collection of Scikit-Learn compatible time series transformers and tools.

tsfeast A collection of Scikit-Learn compatible time series transformers and tools. Installation Create a virtual environment and install: From PyPi p

Automatic extraction of relevant features from time series:
Automatic extraction of relevant features from time series:

tsfresh This repository contains the TSFRESH python package. The abbreviation stands for "Time Series Feature extraction based on scalable hypothesis

A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

Probabilistic time series modeling in Python
Probabilistic time series modeling in Python

GluonTS - Probabilistic Time Series Modeling in Python GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (

Comments
  • Time series data augmentation

    Time series data augmentation

    There is a code example that gives to increase the amount of series data by adding slightly modified copies of already existing time series data or newly created synthetic series data from existing data?

    opened by YAYAYru 0
  • KeyError: 'country'

    KeyError: 'country'

    From the following code,

    from timeseries_generator import HolidayFactor, LinearTrend, Generator
    
    lt = LinearTrend(coef=2.0, offset=1., col_name="my_linear_trend")
    
    g: Generator = Generator(factors={lt}, features=None, date_range=pd.date_range(start="01-01-2020", end="01-01-2021"))
    
    holiday_factor = HolidayFactor(
        country_feature_name="country",
    )
    g.add_factor(holiday_factor)
    g.generate()
    

    I get the error. I am not sure this is expected behavior.

    File /usr/local/Caskroom/miniconda/base/envs/tf/lib/python3.9/site-packages/pandas/core/frame.py:10083, in DataFrame.merge(self, right, how, on, left_on, right_on, left_index, right_index, sort, suffixes, copy, indicator, validate)
    ...
    -> 1849     raise KeyError(key)
       1851 # Check for duplicates
       1852 if values.ndim > 1:
    
    KeyError: 'country'
    
    opened by twobitunicorn 0
  • [Feature request] Customizable feature combinations

    [Feature request] Customizable feature combinations

    Hi team, Thanks for the useful library! I wonder if you'd be open to this idea:

    I would like to be able to:

    • Set up categorizing features (let's say, for illustration, CATEGORY=[footwear, t-shirts, socks], SIZE=[S, M, L, US-Mens-8, US-Womens-6) and define Factors on them
    • Generate time-series with more restricted feature combinations than the outer product (again for illustration, "t-shirt sizes for t-shirts, shoe sizes for footwear")

    Today, it seems like Generator.generate() hard-codes the assumption that time-series should be generated for the product of all provided feature values.

    It'd be helpful if, instead, we could have the option of customizing this join to limit down generated combinations?

    Some options I can think of:

    1. Leave the library as-is: Users generate full outer product and limit down what they want in post-processing
      • This seems possible already, but very RAM-intensive if your desired combinations are sparse?
    2. Accept an optional dataframe of factor combinations as parameter to the generate() method
      • Gives full flexibility over which combinations are kept / ignored, without assuming any particular rigid hierarchies between features
      • ...But might need to do a bit of validation to protect against user errors? May not be super easy to use without some documented examples / functions to generate the dataframe
    3. Some more complex API for feature configuration that accommodates specifying valid/invalid feature combinations
      • Might be nicer for usability, but difficult to make general: E.g. a straightforward hierarchy could be represented as a nested dict, but in practice many applications have multiple intersecting views of product category information e.g. brand, type, target segment, etc.
    opened by athewsey 1
  • Generate hourly data

    Generate hourly data

    First of all, thank you for making this repository public! I enjoy its ease of use and the built-in factors.

    Problem description

    I'm currently trying to generate revenue data for a bar/restaurant on an hourly basis. As far as I can see, the timeseries-generator only supports generating one data point per day, not per hour.

    I tried to generate hourly data like g = Generator(factors={lt}, features=None, date_range=pd.date_range(start='15/9/2021', end='30/9/2021', freq='h')) which didn't work.

    Potential solution

    Add the possibility to generate hourly data too. If this is a promising idea in your opinion, I'm willing to contribute to the implementation.

    Thank you in advance!

    opened by nileger 1
Releases(v0.1.0)
  • v0.1.0(Jul 20, 2021)

    • first release of time series generators, including:
      • base factor
      • linear trend factor
      • sinusoidal factor
      • white noise factor
      • random factor
      • holiday factor
      • weekday factor
      • country GDP factor
      • EU industry index factor
    • Examples
      • notebooks which includes some simple examples
      • streamlit dashboard
    Source code(tar.gz)
    Source code(zip)
Owner
Nike Inc.
Nike Inc.
Regularization and Feature Selection in Least Squares Temporal Difference Learning

Regularization and Feature Selection in Least Squares Temporal Difference Learning Description This is Python implementations of Least Angle Regressio

Mina Parham 0 Jan 18, 2022
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

Daniel Formoso 5.7k Dec 30, 2022
Lightweight Machine Learning Experiment Logging 📖

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and co

Robert Lange 65 Dec 08, 2022
An open-source library of algorithms to analyse time series in GPU and CPU.

An open-source library of algorithms to analyse time series in GPU and CPU.

Shapelets 216 Dec 30, 2022
Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters

Somoclu Somoclu is a massively parallel implementation of self-organizing maps. It exploits multicore CPUs, it is able to rely on MPI for distributing

Peter Wittek 239 Nov 10, 2022
Module for statistical learning, with a particular emphasis on time-dependent modelling

Operating system Build Status Linux/Mac Windows tick tick is a Python 3 module for statistical learning, with a particular emphasis on time-dependent

X - Data Science Initiative 410 Dec 14, 2022
Turns your machine learning code into microservices with web API, interactive GUI, and more.

Turns your machine learning code into microservices with web API, interactive GUI, and more.

Machine Learning Tooling 2.8k Jan 02, 2023
A Collection of Conference & School Notes in Machine Learning 🦄📝🎉

Machine Learning Conference & Summer School Notes. 🦄📝🎉

558 Dec 28, 2022
ThunderSVM: A Fast SVM Library on GPUs and CPUs

What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss

Xtra Computing Group 1.4k Dec 22, 2022
🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

Real-time water systems lab 416 Jan 06, 2023
Responsible Machine Learning with Python

Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.

ph_ 624 Jan 06, 2023
Repository for DCA0305, an undergraduate course about Machine Learning Workflows and Pipelines

Federal University of Rio Grande do Norte Technology Center Department of Computer Engineering and Automation Machine Learning Based Systems Design Re

Ivanovitch Silva 81 Oct 18, 2022
Machine Learning from Scratch

Machine Learning from Scratch Author: Shengxuan Wang From: Oregon State University Content: Building Machine Learning model from Scratch, without usin

ShawnWang 0 Jul 05, 2022
scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly.

scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly. Its main purpose is the transformation of bilinear forms into sparse matrices and linear forms into vectors.

Tom Gustafsson 297 Dec 13, 2022
Lingtrain Alignment Studio is an ML based app for texts alignment on different languages.

Lingtrain Alignment Studio Intro Lingtrain Alignment Studio is the ML based app for accurate texts alignment on different languages. Extracts parallel

Sergei Averkiev 186 Jan 03, 2023
Examples and code for the Practical Machine Learning workshop series

Practical Machine Learning Workshop Series Practical Machine Learning for Quantitative Finance Post conference workshop at the WBS Spring Conference D

CompatibL 21 Jun 25, 2022
machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service

This is a machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service. We initially made th

Krishna Priyatham Potluri 73 Dec 01, 2022
A Pythonic framework for threat modeling

pytm: A Pythonic framework for threat modeling Introduction Traditional threat modeling too often comes late to the party, or sometimes not at all. In

Izar Tarandach 644 Dec 20, 2022
Climin is a Python package for optimization, heavily biased to machine learning scenarios

climin climin is a Python package for optimization, heavily biased to machine learning scenarios distributed under the BSD 3-clause license. It works

Biomimetic Robotics and Machine Learning at Technische Universität München 177 Sep 02, 2022
Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)"

CRAN Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)" This code doesn't exa

4 Nov 11, 2021