Responsible Machine Learning with Python

Overview

Responsible Machine Learning with Python

Examples of techniques for training interpretable machine learning (ML) models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.

Overview

Usage of artificial intelligence (AI) and ML models is likely to become more commonplace as larger swaths of the economy embrace automation and data-driven decision-making. While these predictive systems can be quite accurate, they have often been inscrutable and unappealable black boxes that produce only numeric predictions with no accompanying explanations. Unfortunately, recent studies and recent events have drawn attention to mathematical and sociological flaws in prominent weak AI and ML systems, but practitioners don’t often have the right tools to pry open ML models and debug them. This series of notebooks introduces several approaches that increase transparency, accountability, and trustworthiness in ML models. If you are a data scientist or analyst and you want to train accurate, interpretable ML models, explain ML models to your customers or managers, test those models for security vulnerabilities or social discrimination, or if you have concerns about documentation, validation, or regulatory requirements, then this series of Jupyter notebooks is for you! (But please don't take these notebooks or associated materials as legal compliance advice.)

The notebooks highlight techniques such as:

The notebooks can be accessed through:

Further reading:


Enhancing Transparency in Machine Learning Models with Python and XGBoost - Notebook

Monotonicity constraints can turn opaque, complex models into transparent, and potentially regulator-approved models, by ensuring predictions only increase or only decrease for any change in a given input variable. In this notebook, I will demonstrate how to use monotonicity constraints in the popular open source gradient boosting package XGBoost to train an interpretable and accurate nonlinear classifier on the UCI credit card default data.

Once we have trained a monotonic XGBoost model, we will use partial dependence plots and individual conditional expectation (ICE) plots to investigate the internal mechanisms of the model and to verify its monotonic behavior. Partial dependence plots show us the way machine-learned response functions change based on the values of one or two input variables of interest while averaging out the effects of all other input variables. ICE plots can be used to create more localized descriptions of model predictions, and ICE plots pair nicely with partial dependence plots. An example of generating regulator mandated reason codes from high fidelity Shapley explanations for any model prediction is also presented. The combination of monotonic XGBoost, partial dependence, ICE, and Shapley explanations is likely one of the most direct ways to create an interpretable machine learning model today.

Increase Transparency and Accountability in Your Machine Learning Project with Python - Notebook

Gradient boosting machines (GBMs) and other complex machine learning models are popular and accurate prediction tools, but they can be difficult to interpret. Surrogate models, feature importance, and reason codes can be used to explain and increase transparency in machine learning models. In this notebook, we will train a GBM on the UCI credit card default data. Then we’ll train a decision tree surrogate model on the original inputs and predictions of the complex GBM model and see how the variable importance and interactions displayed in the surrogate model yield an overall, approximate flowchart of the complex model’s predictions. We will also analyze the global variable importance of the GBM and compare this information to the surrogate model, our domain expertise, and our reasonable expectations.

To get a better picture of the complex model’s local behavior and to enhance the accountability of the model’s predictions, we will use a variant of the leave-one-covariate-out (LOCO) technique. LOCO enables us to calculate the local contribution each input variable makes toward each model prediction. We will then rank the local contributions to generate reason codes that describe, in plain English, the model’s decision process for every prediction.

Increase Fairness in Your Machine Learning Project with Disparate Impact Analysis using Python and H2O - Notebook

Fairness is an incredibly important, but highly complex entity. So much so that leading scholars have yet to agree on a strict definition. However, there is a practical way to discuss and handle observational fairness, or how your model predictions affect different groups of people. This procedure is often known as disparate impact analysis (DIA). DIA is far from perfect, as it relies heavily on user-defined thresholds and reference levels to measure disparity and does not attempt to remediate disparity or provide information on sources of disparity, but it is a fairly straightforward method to quantify your model’s behavior across sensitive demographic segments or other potentially interesting groups of observations. Some types of DIA are also an accepted, regulation-compliant tool for fair-lending purposes in the U.S. financial services industry. If it’s good enough for multibillion-dollar credit portfolios, it’s probably good enough for your project.

This example DIA notebook starts by training a monotonic gradient boosting machine (GBM) classifier on the UCI credit card default data using the popular open source library, h2o. A probability cutoff for making credit decisions is selected by maximizing the F1 statistic and confusion matrices are generated to summarize the GBM’s decisions across men and women. A basic DIA procedure is then conducted using the information stored in the confusion matrices and some traditional fair lending measures.

Explain Your Predictive Models to Business Stakeholders with LIME using Python and H2O - Notebook

Machine learning can create very accurate predictive models, but these models can be almost impossible to explain to your boss, your customers, or even your regulators. This notebook will use (Local Interpretable Model-agnostic Explanations) LIME to increase transparency and accountability in a complex GBM model trained on the UCI credit card default data. LIME is a method for building linear surrogate models for local regions in a data set, often single rows of data. LIME sheds light on how model predictions are made and describes local model mechanisms for specific rows of data. Because the LIME sampling process may feel abstract to some practitioners, this notebook will also introduce a more straightforward method of creating local samples for LIME.

Once local samples have been generated, we will fit LIME models to understand local trends in the complex model’s predictions. LIME can also tell us the local contribution of each input variable toward each model prediction, and these contributions can be sorted to create reason codes -- plain English explanations of every model prediction. We will also validate the fit of the LIME model to enhance trust in our explanations using the local model’s R2 statistic and a ranked prediction plot.

Testing Machine Learning Models for Accuracy, Trustworthiness, and Stability with Python and H2O - Notebook

Because ML model predictions can vary drastically for small changes in input variable values, especially outside of training input domains, sensitivity analysis is perhaps the most important validation technique for increasing trust in ML model predictions. Sensitivity analysis investigates whether model behavior and outputs remain stable when input data is intentionally perturbed, or other changes are simulated in input data. In this notebook, we will enhance trust in a complex credit default model by testing and debugging its predictions with sensitivity analysis.

We’ll further enhance trust in our model using residual analysis. Residuals refer to the difference between the recorded value of a target variable and the predicted value of a target variable for each row in a data set. Generally, the residuals of a well-fit model should be randomly distributed, because good models will account for most phenomena in a data set, except for random error. In this notebook, we will create residual plots for a complex model to debug any accuracy problems arising from overfitting or outliers.

Machine Learning Model Debugging with Python: All Models are Wrong ... but Why is My Model Wrong? (And Can I Fix It?)

Part 1: Sensitivity Analysis - Notebook

Sensitivity analysis is the perturbation of data under a trained model. It can take many forms and arguably Shapley feature importance, partial dependence, individual conditional expectation, and adversarial examples are all types of sensitivity analysis. This notebook focuses on using these different types of sensitivity analysis to discover error mechanisms and security vulnerabilities and to assess stability and fairness in a trained XGBoost model. It begins by loading the UCI credit card default data and then training an interpretable, monotonically constrained XGBoost model. After the model is trained, global and local Shapley feature importance is calculated. These Shapley values help inform the application of partial dependence and ICE, and together these results guide a search for adversarial examples. The notebook closes by exposing the trained model to a random attack and analyzing the attack results.

These model debugging exercises uncover accuracy, drift, and security problems such as over-emphasis of important features and impactful yet non-robust interactions. Several remediation mechanisms are proposed including editing of final model artifacts to remove or fix errors, missing value injection or regularization during training to lessen the impact of certain features or interactions, and assertion-based missing value injection during scoring to mitigate the effect of non-robust interactions.

Part 2: Residual Analysis - Notebook

In general, residual analysis can be characterized as a careful study of when and how models make mistakes. A better understanding of mistakes will hopefully lead to fewer of them. This notebook uses variants of residual analysis to find error mechanisms and security vulnerabilities and to assess stability and fairness in a trained XGBoost model. It begins by loading the UCI credit card default data and then training an interpretable, monotonically constrained XGBoost gradient boosting machine (GBM) model. (Pearson correlation with the prediction target is used to determine the direction of the monotonicity constraints for each input variable.) After the model is trained, its logloss residuals are analyzed and explained thoroughly and the constrained GBM is compared to a benchmark linear model. These model debugging exercises uncover accuracy, drift, and security problems such as over-emphasis of important variables and strong signal in model residuals. Several remediation mechanisms are proposed including missing value injection during training, additional data collection, and use of assertions to correct known problems during scoring.

From GLM to GBM: Building the Case For Complexity - Notebook

This notebook uses the same credit card default scenario to show how monotonicity constraints, Shapley values and other post-hoc explanations, and discrimination testing can enable practitioners to create direct comparisons between GLM and GBM models. Several candidate probability of default models are selected for comparison using feature selection methods, like LASSO, and by cross-validated ranking. Comparisons then enable building from GLM to more complex GBM models in a step-by-step manner, while retaining model transparency and the ability to test for discrimination. This notebook shows that GBMs can yield better accuracy, more revenue, and that GBMs are also likely to fulfill many model documentation, adverse action notice, and discrimination testing requirements.

Using the Examples

H2O Aquarium (recommended)

H2O Aquarium is a free educational environment that hosts versions of these notebooks among many other H2o-related resources. To use these notebooks in Aquarium:

  1. Navigate to the Aquarium URL: https://aquarium.h2o.ai.

  2. Create a new Aquarium account.

  3. Check the registered email inbox and use the temporary password to login to Aquarium.

  4. Click Browse Labs.

  5. Click View Detail under Open Source MLI Workshop.

  6. Click Start Lab (this can take several minutes).

  7. Click on the Jupyter URL when it becomes available.

  8. Enter the token h2o.

  9. Click the patrick_hall_mli folder.

  10. Browse/run the Jupyter notebooks.

  11. Click End Lab when you are finished.

Virtualenv Installation

For avid Python users, creating a Python virtual environment is a convenient way to run these notebooks.

  1. Install Git.

  2. Clone this repository with the examples.
    $ git clone https://github.com/jphall663/interpretable_machine_learning_with_python.git

  3. Install Anaconda Python 5.1.0 from the Anaconda archives and add it to your system path.

  4. Change directories into the cloned repository.
    $ cd interpretable_machine_learning_with_python

  5. Create a Python 3.6 virtual environment.
    $ virtualenv -p /path/to/anaconda3/bin/python3.6 env_iml

  6. Activate the virtual environment.
    $ source env_iml/bin/activate

  7. Install the correct packages for the example notebooks.
    $ pip install -r requirements.txt

  8. Start Jupyter.
    $ jupyter notebook

Docker Installation

A Dockerfile is provided to build a docker container with all necessary packages and dependencies. This is a way to use these examples if you are on Mac OS X, *nix, or Windows 10. To do so:

  1. Install and start docker.

From a terminal:

  1. Create a directory for the Dockerfile.
    $ mkdir anaconda_py36_h2o_xgboost_graphviz_shap

  2. Fetch the Dockerfile.
    $ curl https://raw.githubusercontent.com/jphall663/interpretable_machine_learning_with_python/master/anaconda_py36_h2o_xgboost_graphviz_shap/Dockerfile > anaconda_py36_h2o_xgboost_graphviz_shap/Dockerfile

  3. Build a docker image from the Dockefile.
    docker build -t iml anaconda_py36_h2o_xgboost_graphviz_shap

  4. Start the docker image and the Jupyter notebook server.
    docker run -i -t -p 8888:8888 iml:latest /bin/bash -c "/opt/conda/bin/jupyter notebook --notebook-dir=/interpretable_machine_learning_with_python --allow-root --ip='*' --port=8888 --no-browser"

  5. Navigate to port 8888 on your machine, probably http://localhost:8888/.

Manual Installation

  1. Anaconda Python 5.1.0 from the Anaconda archives.
  2. Java.
  3. The latest stable h2o Python package.
  4. Git.
  5. XGBoost with Python bindings.
  6. GraphViz.
  7. Seaborn package.
  8. Shap package.

Anaconda Python, Java, Git, and GraphViz must be added to your system path.

From a terminal:

  1. Clone the repository with examples.
    $ git clone https://github.com/jphall663/interpretable_machine_learning_with_python.git

  2. $ cd interpretable_machine_learning_with_python

  3. Start the Jupyter notebook server.
    $ jupyter notebook

  4. Navigate to the port Jupyter directs you to on your machine, probably http://localhost:8888/.

Owner
ph_
Helping people manage AI, machine learning, and analytics risks @bnh-ai; GWU lecturer.
ph_
A basic Ray Tracer that exploits numpy arrays and functions to work fast.

Python-Fast-Raytracer A basic Ray Tracer that exploits numpy arrays and functions to work fast. The code is written keeping as much readability as pos

Rafael de la Fuente 393 Dec 27, 2022
Machine Learning Techniques using python.

👋 Hi, I’m Fahad from TEXAS TECH. 👀 I’m interested in Optimization / Machine Learning/ Statistics 🌱 I’m currently learning Machine Learning and Stat

FAHAD MOSTAFA 1 Jan 19, 2022
Neighbourhood Retrieval (Nearest Neighbours) with Distance Correlation.

Neighbourhood Retrieval with Distance Correlation Assign Pseudo class labels to datapoints in the latent space. NNDC is a slim wrapper around FAISS. N

The Learning Machines 1 Jan 16, 2022
pure-predict: Machine learning prediction in pure Python

pure-predict speeds up and slims down machine learning prediction applications. It is a foundational tool for serverless inference or small batch prediction with popular machine learning frameworks l

Ibotta 84 Dec 29, 2022
Katana project is a template for ASAP 🚀 ML application deployment

Katana project is a FastAPI template for ASAP 🚀 ML API deployment

Mohammad Shahebaz 100 Dec 26, 2022
BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python

BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python. Some of the algorithms included are mor

Jared M. Smith 40 Aug 26, 2022
Microsoft Machine Learning for Apache Spark

Microsoft Machine Learning for Apache Spark MMLSpark is an ecosystem of tools aimed towards expanding the distributed computing framework Apache Spark

Microsoft Azure 3.9k Dec 30, 2022
Made in collaboration with Chris George for Art + ML Spring 2019.

Deepdream Eyes Made in collaboration with Chris George for Art + ML Spring 2019.

Francisco Cabrera 1 Jan 12, 2022
Bayesian optimization in JAX

Bayesian optimization in JAX

Predictive Intelligence Lab 26 May 11, 2022
ETNA – time series forecasting framework

ETNA Time Series Library Predict your time series the easiest way Homepage | Documentation | Tutorials | Contribution Guide | Release Notes ETNA is an

Tinkoff.AI 675 Jan 08, 2023
Bayesian Additive Regression Trees For Python

BartPy Introduction BartPy is a pure python implementation of the Bayesian additive regressions trees model of Chipman et al [1]. Reasons to use BART

187 Dec 16, 2022
使用数学和计算机知识投机倒把

偷鸡不成项目集锦 坦率地讲,涉及金融市场的好策略如果公开,必然导致使用的人多,最后策略变差。所以这个仓库只收集我目前失败了的案例。 加密货币组合套利 中国体育彩票预测 我赚不上钱的项目,也许可以帮助更有能力的人去赚钱。

Roy 28 Dec 29, 2022
Pydantic based mock data generation

This library offers powerful mock data generation capabilities for pydantic based models. It can also be used with other libraries that use pydantic as a foundation, for example SQLModel, Beanie and

Na'aman Hirschfeld 396 Dec 28, 2022
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022
Machine Learning e Data Science com Python

Machine Learning e Data Science com Python Arquivos do curso de Data Science e Machine Learning com Python na Udemy, cliqe aqui para acessá-lo. O prin

Renan Barbosa 1 Jan 27, 2022
Python module for data science and machine learning users.

dsnk-distributions package dsnk distribution is a Python module for data science and machine learning that was created with the goal of reducing calcu

Emmanuel ASIFIWE 1 Nov 23, 2021
Mixing up the Invariant Information clustering architecture, with self supervised concepts from SimCLR and MoCo approaches

Self Supervised clusterer Combined IIC, and Moco architectures, with some SimCLR notions, to get state of the art unsupervised clustering while retain

Bendidi Ihab 9 Feb 13, 2022
2021 Machine Learning Security Evasion Competition

2021 Machine Learning Security Evasion Competition This repository contains code samples for the 2021 Machine Learning Security Evasion Competition. P

Fabrício Ceschin 8 May 01, 2022
Graphsignal is a machine learning model monitoring platform.

Graphsignal is a machine learning model monitoring platform. It helps ML engineers, MLOps teams and data scientists to quickly address issues with data and models as well as proactively analyze model

Graphsignal 143 Dec 05, 2022
[DEPRECATED] Tensorflow wrapper for DataFrames on Apache Spark

TensorFrames (Deprecated) Note: TensorFrames is deprecated. You can use pandas UDF instead. Experimental TensorFlow binding for Scala and Apache Spark

Databricks 757 Dec 31, 2022