The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Overview

Patient Selection for Diabetes Drug Testing

Project Overview

EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical industry and regulators to make decisions on clinical trials. You are a data scientist for an exciting unicorn healthcare startup that has created a groundbreaking diabetes drug that is ready for clinical trial testing. It is a very unique and sensitive drug that requires administering the drug over at least 5-7 days of time in the hospital(X number of days based off of distribution that I will see in data and cutoff point) with frequent monitoring/testing and patient medication adherence training with a mobile application. You have been provided a patient dataset from a client partner and are tasked with building a predictive model that can identify which type of patients the company should focus their efforts testing this drug on. Target patients are people that are likely to be in the hospital for this duration of time and will not incur significant additional costs for administering this drug to the patient and monitoring.

In order to achieve your goal you must first build a regression model that can predict the estimated hospitalization time for a patient and also provide an uncertainty estimate range for that prediction so that you can rank the predictions based off of the uncertainty range.

Expected Hospitalization Time Regression and Uncertainty Estimation Model: Utilizing a synthetic dataset(upsampled, denormalized, with line level augmentation) built off of the UCI Diabetes readmission dataset, students will build a regression model that predicts the expected days of hospitalization time and an uncertainty range estimation.

This project will demonstrate the importance of building the right data representation at the encounter level, with appropriate filtering and preprocessing/feature engineering of key medical code sets. This project will also require students to analyze and interpret their model for biases across key demographic groups. Lastly, students will utilize the TF probability library to provide uncertainty range estimates in the regression output predictions to prioritize and triage prediction uncertainty levels.

In the end you will be creating a demographic bias analysis to detect if your model has any bias which we know can be a huge issue in working with healthcare data!

Project Instructions

  1. Project Instructions & Prerequisites
  2. Learning Objectives
  3. Steps to Completion

1. Project Instructions

Context: EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical industry and regulators to make decisions on clinical trials. You are a data scientist for an exciting unicorn healthcare startup that has created a groundbreaking diabetes drug that is ready for clinical trial testing. It is a very unique and sensitive drug that requires administering the drug over at least 5-7 days of time in the hospital with frequent monitoring/testing and patient medication adherence training with a mobile application. You have been provided a patient dataset from a client partner and are tasked with building a predictive model that can identify which type of patients the company should focus their efforts testing this drug on. Target patients are people that are likely to be in the hospital for this duration of time and will not incur significant additional costs for administering this drug to the patient and monitoring.

In order to achieve your goal you must build a regression model that can predict the estimated hospitalization time for a patient and use this to select/filter patients for your study.

Expected Hospitalization Time Regression Model: Utilizing a synthetic dataset(denormalized at the line level augmentation) built off of the UCI Diabetes readmission dataset, students will build a regression model that predicts the expected days of hospitalization time and then convert this to a binary prediction of whether to include or exclude that patient from the clinical trial.

This project will demonstrate the importance of building the right data representation at the encounter level, with appropriate filtering and preprocessing/feature engineering of key medical code sets. This project will also require students to analyze and interpret their model for biases across key demographic groups.

Dataset

Due to healthcare PHI regulations (HIPAA, HITECH), there are limited number of publicly available datasets and some datasets require training and approval. So, for the purpose of this exercise, we are using a dataset from UC Irvine that has been modified for this course. Please note that it is limited in its representation of some key features such as diagnosis codes which are usually an unordered list in 835s/837s (the HL7 standard interchange formats used for claims and remits).

https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008 Data Schema The dataset reference information can be https://github.com/udacity/nd320-c1-emr-data-starter/tree/master/project/data_schema_references. There are two CSVs that provide more details on the fields and some of the mapped values.

Project Submission

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "student_project_submission.ipynb" and save another copy as an HTML file by clicking "File" -> "Download as.."->"html". Include the "utils.py" and "student_utils.py" files in your submission. The student_utils.py should be where you put most of your code that you write and the summary and text explanations should be written inline in the notebook. Once you download these files, compress them into one zip file for submission in the Udacity Classroom.

Prerequisites

  • Intermediate level knowledge of Python
  • Basic knowledge of probability and statistics
  • Basic knowledge of machine learning concepts
  • Installation of Tensorflow 2.0 and other dependencies(conda environment.yml or virtualenv requirements.txt file provided)

Environment Setup

For step by step instructions on creating your environment, please go to https://github.com/udacity/nd320-c1-emr-data-starter/blob/master/README.md

  1. Learning Objectives

By the end of the project, you will be able to:

  • Use the Tensorflow Dataset API to scalably extract, transform, and load datasets and build datasets aggregated at the line, encounter, and patient data levels(longitudinal)
  • Analyze EHR datasets to check for common issues (data leakage, statistical properties, missing values, high cardinality) by performing exploratory data analysis.
  • Create categorical features from Key Industry Code Sets (ICD, CPT, NDC) and reduce dimensionality for high cardinality features by using embeddings
  • Create derived features(bucketing, cross-features, embeddings) utilizing Tensorflow feature columns on both continuous and categorical input features
  • Use the Tensorflow Probability library to train a model that provides uncertainty range predictions that allow for risk adjustment/prioritization and triaging of predictions
  • Analyze and determine biases for a model for key demographic groups by evaluating performance metrics across groups by using the Aequitas framework

3. Steps to Completion

Please follow all of the direction in the Jupyter Notebook file in classroom workspace or from the Github Repo if you decide to use your own environment to complete the project.

You complete the following steps there:

  1. Data Analysis
  2. Create Categorical Features with TF Feature Columns
  3. Create Continuous/Numerical Features with TF Feature Columns
  4. Build Deep Learning Regression Model with Sequential API and TF Probability Layers
  5. Evaluating Potential Model Biases with Aequitas Toolkit

Project Submission

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "student_project_submission.ipynb" and save another copy as an HTML file by clicking "File" -> "Download as.."->"html". Include the "utils.py" and "student_utils.py" files in your submission. The student_utils.py should be where you put most of your code that you write and the summary and text explanations should be written inline in the notebook. Once you download these files, compress them into one zip file for submission in the Udacity Classroom.

Once you have completed your project please

  1. Make sure the project meets all of the specifications on the Project Rubric
  2. If you are working in directly in our workspaces, you can submit your project directly there
  3. If you are working in your own environment or if you have issues submitting directly in the workspace, please zip up your flies and submit them that way.

Best of luck on the project. Remember that you can use the resources provided in the student hub or talk with you mentor if you have questions too.

Owner
Omar Laham
Bioinformatician and Healthcare AI Engineer
Omar Laham
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
Rest API Written In Python To Classify NSFW Images.

Rest API Written In Python To Classify NSFW Images.

Wahyusaputra 2 Dec 23, 2021
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader πŸ”΄ IMPORTANT ❗ πŸ”΄ The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
A fast Protein Chain / Ligand Extractor and organizer.

Are you tired of using visualization software, or full blown suites just to separate protein chains / ligands ? Are you tired of organizing the mess o

Amine Abdz 9 Nov 06, 2022
ν†΅μΌλœ DataScience 폴더 ꡬ쑰 제곡 및 κ°€μƒν™˜κ²½ μž‘μ—…μ˜ 뢀담감 ν•΄μ†Œ

Lucas coded by linux shell λͺ©μ°¨ Mac버전 CookieCutter (autoenv) 1.How to Install autoenv 2.폴더 μ§„μž… μ‹œ, activate κ΅¬ν˜„ν•˜κΈ° 3.폴더 νƒˆμΆœ μ‹œ, deactivate κ΅¬ν˜„ν•˜κΈ° 4.Alias μ„€μ •ν•˜κΈ° 5

ello 3 Feb 21, 2022
Official Repository for our ECCV2020 paper: Imbalanced Continual Learning with Partitioning Reservoir Sampling

Imbalanced Continual Learning with Partioning Reservoir Sampling This repository contains the official PyTorch implementation and the dataset for our

Chris Dongjoo Kim 40 Sep 18, 2022
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)

PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa

Visual Inference Lab @TU Darmstadt 8 Dec 11, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
A parallel framework for population-based multi-agent reinforcement learning.

MALib: A parallel framework for population-based multi-agent reinforcement learning MALib is a parallel framework of population-based learning nested

MARL @ SJTU 348 Jan 08, 2023
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Daft-Exprt - PyTorch Implementation PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis The

Keon Lee 47 Dec 18, 2022
Implementation of the paper Recurrent Glimpse-based Decoder for Detection with Transformer.

REGO-Deformable DETR By Zhe Chen, Jing Zhang, and Dacheng Tao. This repository is the implementation of the paper Recurrent Glimpse-based Decoder for

Zhe Chen 33 Nov 30, 2022
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)

FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho

75 Dec 28, 2022
Python SDK for building, training, and deploying ML models

Overview of Kubeflow Fairing Kubeflow Fairing is a Python package that streamlines the process of building, training, and deploying machine learning (

Kubeflow 325 Dec 13, 2022
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022