Keras implementation of AdaBound

Overview

AdaBound for Keras

Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate.

Usage

Add the adabound.py script to your project, and import it. Can be a dropin replacement for Adam Optimizer.

Also supports AMSBound variant of the above, equivalent to AMSGrad from Adam.

from adabound import AdaBound

optm = AdaBound(lr=1e-03,
                final_lr=0.1,
                gamma=1e-03,
                weight_decay=0.,
                amsbound=False)

Results

With a wide ResNet 34 and horizontal flips data augmentation, and 100 epochs of training with batchsize 128, it hits 92.16% (called v1).

Weights are available inside the Releases tab

NOTE

  • The smaller ResNet 20 models have been removed as they did not perform as expected and were depending on a flaw during the initial implementation. The ResNet 32 shows the actual performance of this optimizer.

With a small ResNet 20 and width + height data + horizontal flips data augmentation, and 100 epochs of training with batchsize 1024, it hits 89.5% (called v1).

On a small ResNet 20 with only width and height data augmentations, with batchsize 1024 trained for 100 epochs, the model gets close to 86% on the test set (called v3 below).

Train Set Accuracy

Train Set Loss

Test Set Accuracy

Test Set Loss

Requirements

  • Keras 2.2.4+ & Tensorflow 1.12+ (Only supports TF backend for now).
  • Numpy
Comments
  • suggestion: allow to train x2 or x3 bigger networks on same vram with TF backend

    suggestion: allow to train x2 or x3 bigger networks on same vram with TF backend

    same as my PR https://github.com/keras-team/keras-contrib/pull/478 works only with TF backend

    class AdaBound(Optimizer):
        """AdaBound optimizer.
        Default parameters follow those provided in the original paper.
        # Arguments
            lr: float >= 0. Learning rate.
            final_lr: float >= 0. Final learning rate.
            beta_1: float, 0 < beta < 1. Generally close to 1.
            beta_2: float, 0 < beta < 1. Generally close to 1.
            gamma: float >= 0. Convergence speed of the bound function.
            epsilon: float >= 0. Fuzz factor. If `None`, defaults to `K.epsilon()`.
            decay: float >= 0. Learning rate decay over each update.
            weight_decay: Weight decay weight.
            amsbound: boolean. Whether to apply the AMSBound variant of this
                algorithm.
            tf_cpu_mode: only for tensorflow backend
                  0 - default, no changes.
                  1 - allows to train x2 bigger network on same VRAM consuming RAM
                  2 - allows to train x3 bigger network on same VRAM consuming RAM*2
                      and CPU power.
        # References
            - [Adaptive Gradient Methods with Dynamic Bound of Learning Rate]
              (https://openreview.net/forum?id=Bkg3g2R9FX)
            - [Adam - A Method for Stochastic Optimization]
              (https://arxiv.org/abs/1412.6980v8)
            - [On the Convergence of Adam and Beyond]
              (https://openreview.net/forum?id=ryQu7f-RZ)
        """
    
        def __init__(self, lr=0.001, final_lr=0.1, beta_1=0.9, beta_2=0.999, gamma=1e-3,
                     epsilon=None, decay=0., amsbound=False, weight_decay=0.0, tf_cpu_mode=0, **kwargs):
            super(AdaBound, self).__init__(**kwargs)
    
            if not 0. <= gamma <= 1.:
                raise ValueError("Invalid `gamma` parameter. Must lie in [0, 1] range.")
    
            with K.name_scope(self.__class__.__name__):
                self.iterations = K.variable(0, dtype='int64', name='iterations')
                self.lr = K.variable(lr, name='lr')
                self.beta_1 = K.variable(beta_1, name='beta_1')
                self.beta_2 = K.variable(beta_2, name='beta_2')
                self.decay = K.variable(decay, name='decay')
    
            self.final_lr = final_lr
            self.gamma = gamma
    
            if epsilon is None:
                epsilon = K.epsilon()
            self.epsilon = epsilon
            self.initial_decay = decay
            self.amsbound = amsbound
    
            self.weight_decay = float(weight_decay)
            self.base_lr = float(lr)
            self.tf_cpu_mode = tf_cpu_mode
    
        def get_updates(self, loss, params):
            grads = self.get_gradients(loss, params)
            self.updates = [K.update_add(self.iterations, 1)]
    
            lr = self.lr
            if self.initial_decay > 0:
                lr = lr * (1. / (1. + self.decay * K.cast(self.iterations,
                                                          K.dtype(self.decay))))
    
            t = K.cast(self.iterations, K.floatx()) + 1
    
            # Applies bounds on actual learning rate
            step_size = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
                              (1. - K.pow(self.beta_1, t)))
    
            final_lr = self.final_lr * lr / self.base_lr
            lower_bound = final_lr * (1. - 1. / (self.gamma * t + 1.))
            upper_bound = final_lr * (1. + 1. / (self.gamma * t))
    
            e = K.tf.device("/cpu:0") if self.tf_cpu_mode > 0 else None
            if e: e.__enter__()
            ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
            vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
            if self.amsbound:
                vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
            else:
                vhats = [K.zeros(1) for _ in params]
            if e: e.__exit__(None, None, None)
            
            self.weights = [self.iterations] + ms + vs + vhats
    
            for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats):
                # apply weight decay
                if self.weight_decay != 0.:
                    g += self.weight_decay * K.stop_gradient(p)
    
                e = K.tf.device("/cpu:0") if self.tf_cpu_mode == 2 else None
                if e: e.__enter__()                    
                m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
                v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
                if self.amsbound:
                    vhat_t = K.maximum(vhat, v_t)
                    self.updates.append(K.update(vhat, vhat_t))
                if e: e.__exit__(None, None, None)
                
                if self.amsbound:
                    denom = (K.sqrt(vhat_t) + self.epsilon)
                else:
                    denom = (K.sqrt(v_t) + self.epsilon)                        
    
                # Compute the bounds
                step_size_p = step_size * K.ones_like(denom)
                step_size_p_bound = step_size_p / denom
                bounded_lr_t = m_t * K.minimum(K.maximum(step_size_p_bound,
                                                         lower_bound), upper_bound)
    
                p_t = p - bounded_lr_t
    
                self.updates.append(K.update(m, m_t))
                self.updates.append(K.update(v, v_t))
                new_p = p_t
    
                # Apply constraints.
                if getattr(p, 'constraint', None) is not None:
                    new_p = p.constraint(new_p)
    
                self.updates.append(K.update(p, new_p))
            return self.updates
    
        def get_config(self):
            config = {'lr': float(K.get_value(self.lr)),
                      'final_lr': float(self.final_lr),
                      'beta_1': float(K.get_value(self.beta_1)),
                      'beta_2': float(K.get_value(self.beta_2)),
                      'gamma': float(self.gamma),
                      'decay': float(K.get_value(self.decay)),
                      'epsilon': self.epsilon,
                      'weight_decay': self.weight_decay,
                      'amsbound': self.amsbound}
            base_config = super(AdaBound, self).get_config()
            return dict(list(base_config.items()) + list(config.items()))
    
    opened by iperov 13
  • AdaBound.iterations

    AdaBound.iterations

    this param is not saved.

    I looked at official pytorch implementation from original paper. https://github.com/Luolc/AdaBound/blob/master/adabound/adabound.py

    it has

    # State initialization
    if len(state) == 0:
        state['step'] = 0
    

    state is saved with the optimizer.

    also it has

    # Exponential moving average of gradient values
    state['exp_avg'] = torch.zeros_like(p.data)
    # Exponential moving average of squared gradient values
    state['exp_avg_sq'] = torch.zeros_like(p.data)
    

    these values should also be saved

    So your keras implementation is wrong.

    opened by iperov 10
  • Using SGDM with lr=0.1 leads to not learning

    Using SGDM with lr=0.1 leads to not learning

    Thanks for sharing your keras version of adabound and I found that when changing optimizer from adabound to SGDM (lr=0.1), the resnet doesn't learn at all like the fig below. image

    I remember that in the original paper it uses SGDM (lr=0.1) for comparisons and I'm wondering how this could be.

    opened by syorami 10
  • clip by value

    clip by value

    https://github.com/CyberZHG/keras-adabound/blob/master/keras_adabound/optimizers.py

    K.minimum(K.maximum(step, lower_bound), upper_bound)

    will not work?

    opened by iperov 2
  • Unexpected keyword argument passed to optimizer: amsbound

    Unexpected keyword argument passed to optimizer: amsbound

    I installed with pip install keras-adabound imported with: from keras_adabound import AdaBound and declared the optimizer as: opt = AdaBound(lr=1e-03,final_lr=0.1, gamma=1e-03, weight_decay=0., amsbound=False) Then, I'm getting the error: TypeError: Unexpected keyword argument passed to optimizer: amsbound

    changing the pip install to adabound (instead of keras-adabound) and the import to from adabound import AdaBound, the keyword amsbound is recognized, but then I get the error: TypeError: __init__() missing 1 required positional argument: 'params'

    Am I mixing something up here or missing something?

    opened by stabilus 0
  • Unclear how to import and use tf.keras version

    Unclear how to import and use tf.keras version

    I have downloaded the files and placed them in a folder in the site packages for my virtual environment but I can't get this to work. I have added the folder path to sys.path and verified it is listed. I'm running Tensorflow 2.1.0. What am I doing wrong?

    opened by mnweaver1 0
  • about lr

    about lr

    Thanks for a good optimizer According to usage optm = AdaBound(lr=1e-03, final_lr=0.1, gamma=1e-03, weight_decay=0., amsbound=False) Does the learning rate gradually increase by the number of steps?


    final lr is described as Final learning rate. but it actually is leaning rate relative to base lr and current klearning rate? https://github.com/titu1994/keras-adabound/blob/5ce819b6ca1cd95e32d62e268bd2e0c99c069fe8/adabound.py#L72

    opened by tanakataiki 1
Releases(0.1)
Owner
Somshubra Majumdar
Interested in Machine Learning, Deep Learning and Data Science in general
Somshubra Majumdar
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
Universal Probability Distributions with Optimal Transport and Convex Optimization

Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing

Rianne van den Berg 172 Dec 13, 2022
A Lighting Pytorch Framework for Recommendation System, Easy-to-use and Easy-to-extend.

Torch-RecHub A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend. 安装 pip install torch-rechub 主要特性 scikit-learn风格易用

Mincai Lai 67 Jan 04, 2023
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr

Image Processing Group - BarcelonaTECH - UPC 347 Nov 22, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

mani 1.2k Jan 07, 2023
Gradient Inversion with Generative Image Prior

Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N

MLLab @ Postech 25 Jan 09, 2023
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 03, 2023
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as

Amazon Web Services - Labs 35 Apr 14, 2022
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
PyTorch implementation of Densely Connected Time Delay Neural Network

Densely Connected Time Delay Neural Network PyTorch implementation of Densely Connected Time Delay Neural Network (D-TDNN) in our paper "Densely Conne

Ya-Qi Yu 64 Oct 11, 2022
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022
Hardware accelerated, batchable and differentiable optimizers in JAX.

JAXopt Installation | Examples | References Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX. Installation JAXopt can be

Google 621 Jan 08, 2023
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

DV Lab 115 Dec 23, 2022
Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks)

Pytorch implementation of Relational Networks - A simple neural network module for relational reasoning Implemented & tested on Sort-of-CLEVR task. So

Kim Heecheol 800 Dec 05, 2022
Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022
PoolFormer: MetaFormer is Actually What You Need for Vision

PoolFormer: MetaFormer is Actually What You Need for Vision (arXiv) This is a PyTorch implementation of PoolFormer proposed by our paper "MetaFormer i

Sea AI Lab 1k Dec 30, 2022