Automate issue discovery for your projects against Lightning nightly and releases.

Overview

Logo

Automated Testing for Lightning EcoSystem Projects

CI testing Build Status pre-commit.ci status


Automate issue discovery for your projects against Lightning nightly and releases.
You get CPUs, Multi-GPUs testing for free, and Slack notification alerts if issues arise!

How do I add my own Project?

Pre-requisites

Here are pre-requisites for your project before adding to the Lightning EcoSystem CI:

  • Your project already includes some Python tests with PyTorch Lightning as a dependency
  • You'll be a contact/responsible person to resolve any issues that the CI finds in the future for your project

Adding your own project config

  1. First, fork this project (with CLI or in browser) to be able to create a new Pull Request, and work within a specific branch.
    gh repo fork PyTorchLightning/ecosystem-ci
    cd ecosystem-ci/
  2. Copy the template file in configs folder and call it <my_project_name>.yaml.
    cp configs/template.yaml configs/<my_project_name>.yaml
    
  3. At the minimum, modify the HTTPS variable to point to your repository. See Configuring my project for more options.
    target_repository:
      HTTPS: https://github.com/MyUsername/MyProject.git
    ...
    If your project tests multiple configurations or you'd like to test against multiple Lightning versions such as master and release branches, create a config file for each one of them. As an example, have a look at metrics master and metrics release CI files.
  4. Add your config filename to either/both the GitHub CPU CI file or the Azure GPU CI file.
    • For example, for the GitHub CPU CI file we append our config into the pytest parametrization:
      ...
      jobs:
        pytest:
          ...
              config:
                - "PyTorchLightning/metrics_pl-release.yaml"
                - "PyTorchLightning/transformers_pl-release.yaml"
                - "MyUsername/myproject-release.yaml"
              include:
                - {os: "ubuntu-20.04", python-version: "3.8", config: "PyTorchLightning/metrics_pl-master.yaml"}
                - {os: "ubuntu-20.04", python-version: "3.9", config: "PyTorchLightning/transformers_pl-master.yaml"}
                - {os: "ubuntu-20.04", python-version: "3.9", config: "MyUsername/my_project-master.yaml"}
              exclude:
                - {os: "windows-2019", config: "PyTorchLightning/transformers_pl-release.yaml"}
      ...
    • For example, in the Azure GPU CI file file:
      ...
      jobs:
      - template: testing-template.yml
        parameters:
          configs:
          - "PyTorchLightning/metrics_pl-master.yaml"
          - "PyTorchLightning/metrics_pl-release.yaml"
          - "MyUsername/my_project-master.yaml"
  5. Add the responsible person(s) to CODEOWNERS for your organization folder or just the project.
    # MyProject
    /configs/Myusername/MyProject*    @Myusername
    
  6. Finally, create a draft PR to the repo!

(Optional). [wip] join our Slack channel to be notified if your project is breaking

Configuring my project

The config include a few different sections:

  • target_repository include your project
  • env (optional) define any environment variables required when running tests
  • dependencies listing all dependencies which are taken outside pip
  • testing defines specific pytest arguments and what folders shall be tested

All dependencies as well as the target repository is sharing the same template with the only required field HTTPS and all others are optional:

target_repository:
  HTTPS: https://github.com/PyTorchLightning/metrics.git
  username: my-nick  # Optional, used when checking out private/protected repo
  password: dont-tell-anyone # Optional, used when checking out private/protected repo
  token: authentication-token # Optional, overrides the user/pass when checking out private/protected repo
  checkout: master # Optional, checkout a particular branch or a tag
  install_extras: all # Refers to standard pip option to install some additional dependencies defined with setuptools, typically used as `<my-package>[<install_extras>]`.

# Optional, if any installation/tests require some env variables
env:
   MY_ENV_VARIABLE: "VAR"

copy_tests:
    - integrations # copied folder from the original repo into the running test directory
    # this is copied as we use the helpers inside integrations as regular python package
    - tests/__init__.py
    - tests/helpers

# Optional, additional pytest arguments and control which directory to test on
testing:
  dirs:
    - integrations
  pytest_args: --strict

Note: If you define some files as done above, and they are using internal-cross imports, you need to copy the __init__.py files from each particular package level.

The testing section provides access to the pytest run args and command.

testing:
  # by default pytest is called on all copied items/tests
  dirs:
    - integrations
  # OPTIONAL, additional pytest arguments
  pytest_args: --strict
Owner
Pytorch Lightning
Pytorch Lightning
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu

THUDM 66 Dec 22, 2022
Companion code for the paper "An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence" (NeurIPS 2021)

ReLU-GP Residual (RGPR) This repository contains code for reproducing the following NeurIPS 2021 paper: @inproceedings{kristiadi2021infinite, title=

Agustinus Kristiadi 4 Dec 26, 2021
git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser Abstract The success of deep denoisers on real-world colo

Yue Cao 51 Nov 22, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe

YueSong 32 Dec 25, 2022
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023
A synthetic texture-invariant dataset for object detection of UAVs

A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas

LARICS Lab 10 Aug 13, 2022
Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Christopher T. Chubb 35 Dec 21, 2022
Deep Convolutional Generative Adversarial Networks

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t

Alec Radford 3.4k Dec 29, 2022
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
Pytorch domain adaptation package

DomainAdaptation This package is created to tackle the problem of domain shifts when dealing with two domains of different feature distributions. In d

Institute of Computational Perception 7 Oct 22, 2022
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021
Hooks for VCOCO

Verbs in COCO (V-COCO) Dataset This repository hosts the Verbs in COCO (V-COCO) dataset and associated code to evaluate models for the Visual Semantic

Saurabh Gupta 131 Nov 24, 2022
Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021.

Conformal time-series forecasting Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021. If you use our code in yo

Kamilė Stankevičiūtė 36 Nov 21, 2022
Computer Vision and Pattern Recognition, NUS CS4243, 2022

CS4243_2022 Computer Vision and Pattern Recognition, NUS CS4243, 2022 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : h

Xavier Bresson 142 Dec 15, 2022
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
Codes for the AAAI'22 paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning"

TransZero [arXiv] This repository contains the testing code for the paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning" accepted to

Shiming Chen 52 Jan 01, 2023
Create and implement a deep learning library from scratch.

In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The Proj

Rishabh Bali 22 Aug 23, 2022