CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

Overview

CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

CAPRI-Context-Aware Interpretable Point-of-Interest Recommendation Framework

This repository contains a framework for Recommender Systems (RecSys), allowing users to choose a dataset on a model based on their demand.

CAPRI Overview

CAPRI

☑️ Prerequisites

You will need below libraries to be installed before running the application:

  • Python >= 3.4
  • NumPy >= 1.19
  • SciPy >= 1.6
  • PyInquirer >= 1.0.3

For a simple solution, you can simply run the below command in the root directory:

pip install -r prerequisites.txt

🚀 Launch the Application

Start the project by running the main.py in the root directory. With this, the application settings are loaded from the config.py file. You can select from different options to choose a model (e.g. GeoSoCa, available on the Models folder) and a dataset (e.g. Yelp, available on the Data folder) to be processed by the selected model, along with a fusion operator (e.g. prodect or sum). The system starts processing data using the selected model and provides some evaluations on it as well. The final results will be added to the Generated folder, withe the name template representing which model has been emplyed on which dataset and with what item selection rate.

🧩 Contribution Guide

Contribution to the project can be done through various approaches:

Adding a new dataset

All datasets can be found in ./Data/ directory. In order to add a new dataset, you should:

  • Modify the config.py file and add a record to the datasets dictionary. The key of the item should be the dataset's name (CapitalCase) and the value is an array of strings containing the dataset scopes (all CapitalCase). For instance
"DatasetName":  ["Scope1", "Scope2", "Scope3"]
  • Add a folder to the ./Data/ directory with the exact same name selected in the previous step. This way, your configs are attached to the dataset. In the created folder, add files of the dataset (preferably camelCase, e.g. socialRelations). Note that for each of these files, a variable with the exact same name will be automatically generated and fed to the models section. You can find a sample for the dataset sturcture here:
+ Data/
	+ Dataset1
		+ datasetFile1
		+ datasetFile2
		+ datasetFile3
	+ Dataset2
		+ datasetFile4
		+ datasetFile5
		+ datasetFile6

Adding a new model

Models can be found in ./Models/ directory. In order to add a new model, you should:

  • Modify the config.py file and add a record to the models dictionary. The key of the item should be the model's name (CapitalCase) and the value is an array of strings containing the scopes that mode covers (all CapitalCase). For instance
"ModelName":  ["Scope1", "Scope2", "Scope3"]
  • Add a folder to the ./Models/ directory with the exact same name selected in the previous step. This way, your configs are attached to the model. In the created folder, add files of the model (preferably camelCase, e.g. socialRelations). Models contain a main.py file that holds the contents of the model. The file main.py contains a class with the exact name of the model and the letter 'Main' (e.g. ModelNameMain). This class should contain a main function with two argument: (i) datasetFiles dictionary, (ii) the parameters of the selected model (including top-K items for evaluation, sparsity ratio, restricted list for computation, and dataset name). For a better description, check the code sample below:
import numpy as np
...

class NewModelMain:
	def main(datasetFiles, parameters):
		print('Other codes goes here')

There is a utils.py file in the ./Models/ directory that keeps the utilities that can be used in all models. If you are thinking about a customized utilities with other functions, you can add an extendedUtils.py file in the model's directory. Also, a /lib/ directory is considered in each model folders that contains the libraries used in the model. You can find a sample for the dataset sturcture here:

+ Models/
	+ Model1/
		+ lib/
		+ __init__.py
		+ main.py
		+ extendedUtils.py
	+ utils.py
	+ __init__.py

Note: do not forget to add a init.py file to the directories you make.

Adding a new evaluation

You can simply add the evaluations to the ./Evaluations/metrics.py file.

⚠️ TODOs

  • Add a proper caching policy to check the Generated directory
  • Unifying saveModel and loadModel in utils.py
  • Add the impact of fusions when running models
  • Add a logging functionality
Owner
RecSys Lab
The RecSys Lab is a collaboration to investigate a new view of analysis in the domain of recommendation.
RecSys Lab
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Facebook Research 46 Dec 15, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
Face Recognition and Emotion Detector Device

Face Recognition and Emotion Detector Device Orange PI 1 Python 3.10.0 + Django 3.2.9 Project's file explanation Django manage.py Django commands hand

BootyAss 2 Dec 21, 2021
Udacity's CS101: Intro to Computer Science - Building a Search Engine

Udacity's CS101: Intro to Computer Science - Building a Search Engine All soluti

Phillip 0 Feb 26, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
Hierarchical Attentive Recurrent Tracking

Hierarchical Attentive Recurrent Tracking This is an official Tensorflow implementation of single object tracking in videos by using hierarchical atte

Adam Kosiorek 147 Aug 07, 2021
Official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR2021)

Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets This is the official implementation of "Towards Good Pract

Sanja Fidler's Lab 52 Nov 22, 2022
A library for using chemistry in your applications

Chemistry in python Resources Used The following items are not made by me! Click the words to go to the original source Periodic Tab Json - Used in -

Tech Penguin 28 Dec 17, 2021
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022
Chunkmogrify: Real image inversion via Segments

Chunkmogrify: Real image inversion via Segments Teaser video with live editing sessions can be found here This code demonstrates the ideas discussed i

David Futschik 112 Jan 04, 2023
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Madry Lab 35 Nov 14, 2022
DC3: A Learning Method for Optimization with Hard Constraints

DC3: A learning method for optimization with hard constraints This repository is by Priya L. Donti, David Rolnick, and J. Zico Kolter and contains the

CMU Locus Lab 57 Dec 26, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022