SurvTRACE: Transformers for Survival Analysis with Competing Events

Overview

SurvTRACE: Transformers for Survival Analysis with Competing Events

This repo provides the implementation of SurvTRACE for survival analysis. It is easy to use with only the following codes:

from survtrace.dataset import load_data
from survtrace.model import SurvTraceSingle
from survtrace import Evaluator
from survtrace import Trainer
from survtrace import STConfig

# use METABRIC dataset
STConfig['data'] = 'metabric'
df, df_train, df_y_train, df_test, df_y_test, df_val, df_y_val = load_data(STConfig)

# initialize model
model = SurvTraceSingle(STConfig)

# execute training
trainer = Trainer(model)
trainer.fit((df_train, df_y_train), (df_val, df_y_val))

# evaluating
evaluator = Evaluator(df, df_train.index)
evaluator.eval(model, (df_test, df_y_test))

print("done!")

🔥 See the demo

Please refer to experiment_metabric.ipynb and experiment_support.ipynb !

🔥 How to config the environment

Use our pre-saved conda environment!

conda env create --name survtrace --file=survtrace.yml
conda activate survtrace

or try to install from the requirement.txt

pip3 install -r requirements.txt

🔥 How to get SEER data

  1. Go to https://seer.cancer.gov/data/ to ask for data request from SEER following the guide there.

  2. After complete the step one, we should have the following seerstat software for data access. Open it and sign in with the username and password sent by seer.

  1. Use seerstat to open the ./data/seer.sl file, we shall see the following.

Click on the 'excute' icon to request from the seer database. We will obtain a csv file.

  1. move the csv file to ./data/seer_raw.csv, then run the python script process_seer.py, as

    python process_seer.py

    we will obtain the processed seer data named seer_processed.csv.

📝 Functions

  • single event survival analysis
  • competing events survival analysis
  • multi-task learning
  • automatic hyperparameter grid-search

😄 If you find this result interesting, please consider to cite this paper:

@article{wang2021survtrace,
      title={Surv{TRACE}: Transformers for Survival Analysis with Competing Events}, 
      author={Zifeng Wang and Jimeng Sun},
      year={2021},
      eprint={2110.00855},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Owner
Zifeng
PhD student of Computer Science
Zifeng
Poetry PEP 517 Build Backend & Core Utilities

Poetry Core A PEP 517 build backend implementation developed for Poetry. This project is intended to be a light weight, fully compliant, self-containe

Poetry 293 Jan 02, 2023
nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

Bernhard Liebl 2 Jun 10, 2022
2021 2학기 데이터크롤링 기말프로젝트

공지 주제 웹 크롤링을 이용한 취업 공고 스케줄러 스케줄 주제 정하기 코딩하기 핵심 코드 설명 + 피피티 구조 구상 // 12/4 토 피피티 + 스크립트(대본) 제작 + 녹화 // ~ 12/10 ~ 12/11 금~토 영상 편집 // ~12/11 토 웹크롤러 사람인_평균

Choi Eun Jeong 2 Aug 16, 2022
This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe

Advent-of-cyber-2019-writeup This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe https://tryhackme.com/shivam007/badges/c

shivam danawale 5 Jul 17, 2022
Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention

Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention April 6, 2021 We extended segment-means to compute landmarks without requiri

Zhanpeng Zeng 322 Jan 01, 2023
ACL'22: Structured Pruning Learns Compact and Accurate Models

☕ CoFiPruning: Structured Pruning Learns Compact and Accurate Models This repository contains the code and pruned models for our ACL'22 paper Structur

Princeton Natural Language Processing 130 Jan 04, 2023
Finding Label and Model Errors in Perception Data With Learned Observation Assertions

Finding Label and Model Errors in Perception Data With Learned Observation Assertions This is the project page for Finding Label and Model Errors in P

Stanford Future Data Systems 17 Oct 14, 2022
MEDIALpy: MEDIcal Abbreviations Lookup in Python

A small python package that allows the user to look up common medical abbreviations.

Aberystwyth Systems Biology 7 Nov 09, 2022
Shirt Bot is a discord bot which uses GPT-3 to generate text

SHIRT BOT · Shirt Bot is a discord bot which uses GPT-3 to generate text. Made by Cyclcrclicly#3420 (474183744685604865) on Discord. Support Server EX

31 Oct 31, 2022
QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
A simple word search made in python

Word Search Puzzle A simple word search made in python Usage $ python3 main.py -h usage: main.py [-h] [-c] [-f FILE] Generates a word s

Magoninho 16 Mar 10, 2022
CDLA: A Chinese document layout analysis (CDLA) dataset

CDLA: A Chinese document layout analysis (CDLA) dataset 介绍 CDLA是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label: 正文 标题 图片 图片标题 表格 表格标题 页眉 页脚 注释 公式 Text Title

buptlihang 84 Dec 28, 2022
Code for paper "Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features"

Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features Train python main.py --dataset brazil-flights C

wang zhang 0 Jun 28, 2022
Trained T5 and T5-large model for creating keywords from text

text to keywords Trained T5-base and T5-large model for creating keywords from text. Supported languages: ru Pretraining Large version | Pretraining B

Danil 61 Nov 24, 2022
Some embedding layer implementation using ivy library

ivy-manual-embeddings Some embedding layer implementation using ivy library. Just for fun. It is based on NYCTaxiFare dataset from kaggle (cut down to

Ishtiaq Hussain 2 Feb 10, 2022
Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities

Hiring We are hiring at all levels (including FTE researchers and interns)! If you are interested in working with us on NLP and large-scale pre-traine

Microsoft 7.8k Jan 09, 2023
A2T: Towards Improving Adversarial Training of NLP Models (EMNLP 2021 Findings)

A2T: Towards Improving Adversarial Training of NLP Models This is the source code for the EMNLP 2021 (Findings) paper "Towards Improving Adversarial T

QData 17 Oct 15, 2022
Finally, some decent sample sentences

tts-dataset-prompts This repository aims to be a decent set of sentences for people looking to clone their own voices (e.g. using Tacotron 2). Each se

hecko 19 Dec 13, 2022
SentimentArcs: a large ensemble of dozens of sentiment analysis models to analyze emotion in text over time

SentimentArcs - Emotion in Text An end-to-end pipeline based on Jupyter notebooks to detect, extract, process and anlayze emotion over time in text. E

jon_chun 14 Dec 19, 2022
JaQuAD: Japanese Question Answering Dataset

JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension (2022, Skelter Labs)

SkelterLabs 84 Dec 27, 2022