Textpipe: clean and extract metadata from text

Overview

textpipe: clean and extract metadata from text

Build Status

The textpipe logo

textpipe is a Python package for converting raw text in to clean, readable text and extracting metadata from that text. Its functionalities include transforming raw text into readable text by removing HTML tags and extracting metadata such as the number of words and named entities from the text.

Vision: the zen of textpipe

  • Designed for use in production pipelines without adult supervision.
  • Rechargeable batteries included: provide sane defaults and clear examples to adapt.
  • A uniform interface with thin wrappers around state-of-the-art NLP packages.
  • As language-agnostic as possible.
  • Bring your own models.

Features

  • Clean raw text by removing HTML and other unreadable constructs
  • Identify the language of text
  • Extract the number of words, number of sentences, named entities from a text
  • Calculate the complexity of a text
  • Obtain text metadata by specifying a pipeline containing all desired elements
  • Obtain sentiment (polarity and a subjectivity score)
  • Generates word counts
  • Computes minhash for cheap similarity estimation of documents

Installation

It is recommended that you install textpipe using a virtual environment.

python3 -m venv .venv
  • Using virtualenv.
virtualenv venv -p python3.6
  • Using virtualenvwrapper
mkvirtualenv textpipe -p python3.6
  • Install textpipe using pip.
pip install textpipe
  • Install the required packages using requirements.txt.
pip install -r requirements.txt

A note on spaCy download model requirement

While the requirements.txt file that comes with the package calls for spaCy's en_core_web_sm model, this can be changed depending on the model and language you require for your intended use. See spaCy.io's page on their different models for more information.

Usage example

>>> from textpipe import doc, pipeline
>>> sample_text = 'Sample text! <!DOCTYPE>'
>>> document = doc.Doc(sample_text)
>>> print(document.clean)
'Sample text!'
>>> print(document.language)
'en'
>>> print(document.nwords)
2

>>> pipe = pipeline.Pipeline(['CleanText', 'NWords'])
>>> print(pipe(sample_text))
{'CleanText': 'Sample text!', 'NWords': 3}

In order to extend the existing Textpipe operations with your own proprietary operations;

test_pipe = pipeline.Pipeline(['CleanText', 'NWords'])
def custom_op(doc, context=None, settings=None, **kwargs):
    return 1

custom_argument = {'argument' :1 }
test_pipe.register_operation('CUSTOM_STEP', custom_op)
test_pipe.steps.append(('CUSTOM_STEP', custom_argument ))

Contributing

See CONTRIBUTING for guidelines for contributors.

Changes

0.12.1

  • Bumps redis, tqdm, pyling

0.12.0

  • Bumps versions of many dependencies including textacy. Results for keyterm extraction changed.

0.11.9

  • Exposes arbitrary SpaCy ents properties

0.11.8

  • Exposes SpaCy's cats attribute

0.11.7

  • Bumps spaCy and redis versions

0.11.6

  • Fixes bug where gensim model is not cached in pipeline

0.11.5

  • Raise TextpipeMissingModelException instead of KeyError

0.11.4

  • Bumps spaCy and datasketch dependencies

0.11.1

  • Replaces codacy with pylint on CI
  • Fixes pylint issues

0.11.0

  • Adds wrapper around Gensim keyed vectors to construct document embeddings from Redis cache

0.9.0

  • Adds functionality to compute document embeddings using a Gensim word2vec model

0.8.6

  • Removes non standard utf chars before detecting language

0.8.5

  • Bump spaCy to 2.1.3

0.8.4

  • Fix broken install command

0.8.3

  • Fix broken install command

0.8.2

  • Fix copy-paste error in word vector aggregation (#118)

0.8.1

  • Fixes bugs in several operations that didn't accept kwargs

0.8.0

  • Bumps Spacy to 2.1

0.7.2

  • Pins Spacy and Pattern versions (with pinned lxml)

0.7.0

  • change operation's registry from list to dict
  • global pipeline data is available across operations via the context kwarg
  • load custom operations using register_operation in pipeline
  • custom steps (operations) with arguments
Owner
Textpipe
Textpipe
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

Nathan Cooper 2.3k Jan 01, 2023
Repositório do trabalho de introdução a NLP

Trabalho da disciplina de BI NLP Repositório do trabalho da disciplina Introdução a Processamento de Linguagem Natural da pós BI-Master da PUC-RIO. Eq

Leonardo Lins 1 Jan 18, 2022
null

CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme

Yichun Shen 41 Dec 08, 2022
Code Implementation of "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE: Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction ***** New March 31th, 2022: Scikit-Style API for Easy Usage *****

Chia Yew Ken 111 Dec 23, 2022
Tutorial to pretrain & fine-tune a 🤗 Flax T5 model on a TPUv3-8 with GCP

Pretrain and Fine-tune a T5 model with Flax on GCP This tutorial details how pretrain and fine-tune a FlaxT5 model from HuggingFace using a TPU VM ava

Gabriele Sarti 41 Nov 18, 2022
Facilitating the design, comparison and sharing of deep text matching models.

MatchZoo Facilitating the design, comparison and sharing of deep text matching models. MatchZoo 是一个通用的文本匹配工具包,它旨在方便大家快速的实现、比较、以及分享最新的深度文本匹配模型。 🔥 News

Neural Text Matching Community 3.7k Jan 02, 2023
Source code and dataset for ACL 2019 paper "ERNIE: Enhanced Language Representation with Informative Entities"

ERNIE Source code and dataset for "ERNIE: Enhanced Language Representation with Informative Entities" Reqirements: Pytorch=0.4.1 Python3 tqdm boto3 r

THUNLP 1.3k Dec 30, 2022
AudioCLIP Extending CLIP to Image, Text and Audio

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
A minimal code for fairseq vq-wav2vec model inference.

vq-wav2vec inference A minimal code for fairseq vq-wav2vec model inference. Runs without installing the fairseq toolkit and its dependencies. Usage ex

Vladimir Larin 7 Nov 15, 2022
Common Voice Dataset explorer

Common Voice Dataset Explorer Common Voice Dataset is by Mozilla Made during huggingface finetuning week Usage pip install -r requirements.txt streaml

Ceyda Cinarel 22 Nov 16, 2022
Some embedding layer implementation using ivy library

ivy-manual-embeddings Some embedding layer implementation using ivy library. Just for fun. It is based on NYCTaxiFare dataset from kaggle (cut down to

Ishtiaq Hussain 2 Feb 10, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.

Tevatron Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized

texttron 193 Jan 04, 2023
Training open neural machine translation models

Train Opus-MT models This package includes scripts for training NMT models using MarianNMT and OPUS data for OPUS-MT. More details are given in the Ma

Language Technology at the University of Helsinki 167 Jan 03, 2023
Backend for the Autocomplete platform. An AI assisted coding platform.

Introduction A custom predictor allows you to deploy your own prediction implementation, useful when the existing serving implementations don't fit yo

Tatenda Christopher Chinyamakobvu 1 Jan 31, 2022
Large-scale Knowledge Graph Construction with Prompting

Large-scale Knowledge Graph Construction with Prompting across tasks (predictive and generative), and modalities (language, image, vision + language, etc.)

ZJUNLP 161 Dec 28, 2022
Official Stanford NLP Python Library for Many Human Languages

Official Stanford NLP Python Library for Many Human Languages

Stanford NLP 6.4k Jan 02, 2023
Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET

Training COMET using seq2seq setting Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET. The codes are modified from run_summarizati

tqfang 9 Dec 17, 2022
The (extremely) naive sentiment classification function based on NBSVM trained on wisesight_sentiment

thai_sentiment The naive sentiment classification function based on NBSVM trained on wisesight_sentiment วิธีติดตั้ง pip install thai_sentiment==0.1.3

Charin 7 Dec 08, 2022
Multiple implementations for abstractive text summurization , using google colab

Text Summarization models if you are able to endorse me on Arxiv, i would be more than glad https://arxiv.org/auth/endorse?x=FRBB89 thanks This repo i

463 Dec 26, 2022