Learning to Rewrite for Non-Autoregressive Neural Machine Translation

Overview

RewriteNAT

This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressive Neural Machine Translation". RewriteNAT is a iterative NAT model which utilizes a locator component to explicitly learn to rewrite the erroneous translation pieces during iterative decoding.

Dependencies

Preprocessing

All the datasets are tokenized using the scripts from Moses except for Chinese with Jieba tokenizer, and splitted into subword units using BPE. The tokenized datasets are binaried using the script binaried.sh as follows:

python preprocess.py \
    --source-lang ${src} --target-lang ${tgt} \
    --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
    --destdir data-bin/${dataset} --thresholdtgt 0 --thresholdsrc 0 \ 
    --workers 64 --joined-dictionary

Train

All the models are run on 8 Tesla V100 GPUs for 300,000 updates with an effective batch size of 128,000 tokens apart from En→Fr where we make 500,000 updates to account for the data size. The training scripts train.rewrite.nat.sh is configured as follows:

python train.py \
    data-bin/${dataset} \
    --source-lang ${src} --target-lang ${tgt} \
    --save-dir ${save_dir} \
    --ddp-backend=no_c10d \
    --task translation_lev \
    --criterion rewrite_nat_loss \
    --arch rewrite_nonautoregressive_transformer \
    --noise full_mask \
    ${share_all_embeddings} \
    --optimizer adam --adam-betas '(0.9,0.98)' \
    --lr 0.0005 --lr-scheduler inverse_sqrt \
    --min-lr '1e-09' --warmup-updates 10000 \
    --warmup-init-lr '1e-07' --label-smoothing 0.1 \
    --dropout 0.3 --weight-decay 0.01 \
    --decoder-learned-pos \
    --encoder-learned-pos \
    --length-loss-factor 0.1 \
    --apply-bert-init \
    --log-format 'simple' --log-interval 100 \
    --fixed-validation-seed 7 \ 
    --max-tokens 4000 \
    --save-interval-updates 10000 \
    --max-update ${step} \
    --update-freq 4 \ 
    --fp16 \
    --save-interval ${save_interval} \
    --discriminator-layers 6 \ 
    --train-max-iter ${max_iter} \
    --roll-in-g sample \
    --roll-in-d oracle \
    --imitation-g \
    --imitation-d \
    --discriminator-loss-factor ${discriminator_weight} \
    --no-share-discriminator \
    --generator-scale ${generator_scale} \
    --discriminator-scale ${discriminator_scale} \

Evaluation

We evaluate performance with BLEU for all language pairs, except for En→>Zh, where we use SacreBLEU. The testing scripts test.rewrite.nat.sh is utilized to generate the translations, as follows:

python generate.py \                                            
    data-bin/${dataset} \                                          
    --source-lang ${src} --target-lang ${tgt} \                    
    --gen-subset ${subset} \                                       
    --task translation_lev \                                       
    --path ${save_dir}/${dataset}/checkpoint_average_${suffix}.pt \
    --iter-decode-max-iter ${max_iter} \                           
    --iter-decode-with-beam ${beam} \                              
    --iter-decode-p ${iter_p} \                                    
    --beam 1 --remove-bpe \                                        
    --batch-size 50\                                               
    --print-step \                                                 
    --quiet 

Citation

Please cite as:

@inproceedings{geng-etal-2021-learning,
    title = "Learning to Rewrite for Non-Autoregressive Neural Machine Translation",
    author = "Geng, Xinwei and Feng, Xiaocheng and Qin, Bing",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.265",
    pages = "3297--3308",
}
Owner
Xinwei Geng
Ph.D. student working on improving Neural Machine Translation with Reinforcement Learning @HIT-SCIR
Xinwei Geng
NLP library designed for reproducible experimentation management

Welcome to the Transfer NLP library, a framework built on top of PyTorch to promote reproducible experimentation and Transfer Learning in NLP You can

Feedly 290 Dec 20, 2022
Code of paper: A Recurrent Vision-and-Language BERT for Navigation

Recurrent VLN-BERT Code of the Recurrent-VLN-BERT paper: A Recurrent Vision-and-Language BERT for Navigation Yicong Hong, Qi Wu, Yuankai Qi, Cristian

YicongHong 109 Dec 21, 2022
使用Mask LM预训练任务来预训练Bert模型。训练垂直领域语料的模型表征,提升下游任务的表现。

Pretrain_Bert_with_MaskLM Info 使用Mask LM预训练任务来预训练Bert模型。 基于pytorch框架,训练关于垂直领域语料的预训练语言模型,目的是提升下游任务的表现。 Pretraining Task Mask Language Model,简称Mask LM,即

Desmond Ng 24 Dec 10, 2022
gaiic2021-track3-小布助手对话短文本语义匹配复赛rank3、决赛rank4

决赛答辩已经过去一段时间了,我们队伍ac milan最终获得了复赛第3,决赛第4的成绩。在此首先感谢一些队友的carry~ 经过2个多月的比赛,学习收获了很多,也认识了很多大佬,在这里记录一下自己的参赛体验和学习收获。

102 Dec 19, 2022
Research code for the paper "Fine-tuning wav2vec2 for speaker recognition"

Fine-tuning wav2vec2 for speaker recognition This is the code used to run the experiments in https://arxiv.org/abs/2109.15053. Detailed logs of each t

Nik 103 Dec 26, 2022
Anomaly Detection 이상치 탐지 전처리 모듈

Anomaly Detection 시계열 데이터에 대한 이상치 탐지 1. Kernel Density Estimation을 활용한 이상치 탐지 train_data_path와 test_data_path에 존재하는 시점 정보를 포함하고 있는 csv 형태의 train data와

CLUST-consortium 43 Nov 28, 2022
GPT-3: Language Models are Few-Shot Learners

GPT-3: Language Models are Few-Shot Learners arXiv link Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-trainin

OpenAI 12.5k Jan 05, 2023
A multi-lingual approach to AllenNLP CoReference Resolution along with a wrapper for spaCy.

Crosslingual Coreference Coreference is amazing but the data required for training a model is very scarce. In our case, the available training for non

Pandora Intelligence 71 Jan 04, 2023
Code repository for "It's About Time: Analog clock Reading in the Wild"

it's about time Code repository for "It's About Time: Analog clock Reading in the Wild" Packages required: pytorch (used 1.9, any reasonable version s

52 Nov 10, 2022
Need: Image Search With Python

Need: Image Search The problem is that a user needs to search for a specific ima

Surya Komandooru 1 Dec 30, 2021
Text to speech converter with GUI made in Python.

Text-to-speech-with-GUI Text to speech converter with GUI made in Python. To run this download the zip file and run the main file or clone this repo.

SidTheMiner 1 Nov 15, 2021
Sinkhorn Transformer - Practical implementation of Sparse Sinkhorn Attention

Sinkhorn Transformer This is a reproduction of the work outlined in Sparse Sinkhorn Attention, with additional enhancements. It includes a parameteriz

Phil Wang 217 Nov 25, 2022
Transformer - A TensorFlow Implementation of the Transformer: Attention Is All You Need

[UPDATED] A TensorFlow Implementation of Attention Is All You Need When I opened this repository in 2017, there was no official code yet. I tried to i

Kyubyong Park 3.8k Dec 26, 2022
An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations

FantasyBert English | 中文 Introduction An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations. You can imp

Fan 137 Oct 26, 2022
BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions

BERTopic BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable

Maarten Grootendorst 3.6k Jan 07, 2023
English loanwords in the world's languages

Wiktionary as CLDF Content cldf1 and cldf2 contain cldf-conform data sets with a total of 2 377 756 entries about the vocabulary of all 1403 languages

Viktor Martinović 3 Jan 14, 2022
Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries.

VirtualAssistant Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries. Third Party Libraries us

Logadheep 1 Nov 27, 2021
A framework for implementing federated learning

This is partly the reproduction of the paper of [Privacy-Preserving Federated Learning in Fog Computing](DOI: 10.1109/JIOT.2020.2987958. 2020)

DavidChen 46 Sep 23, 2022
Toolkit for Machine Learning, Natural Language Processing, and Text Generation, in TensorFlow. This is part of the CASL project: http://casl-project.ai/

Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides

ASYML 2.3k Jan 07, 2023
Levenshtein and Hamming distance computation

distance - Utilities for comparing sequences This package provides helpers for computing similarities between arbitrary sequences. Included metrics ar

112 Dec 22, 2022