Utilize Korean BERT model in sentence-transformers library

Overview

ko-sentence-transformers

이 프로젝트는 KoBERT 모델을 sentence-transformers 에서 보다 쉽게 사용하기 위해 만들어졌습니다. Ko-Sentence-BERT-SKTBERT 프로젝트에서는 KoBERT 모델을 sentence-transformers 에서 활용할 수 있도록 하였습니다. 하지만 설치 과정에 약간의 번거로움이 있었고, 라이브러리 코드를 직접 수정하기 때문에 허깅페이스 허브를 활용하기 어려웠습니다. ko-sentence-transformers 는 간단한 설치만으로 한국어 사전학습 모델을 문장 임베딩에 활용할 수 있도록 합니다.

Installation

pip install 을 통해 설치할 수 있습니다.

pip install ko-sentence-transformers

Examples

사전학습된 KoBERT 모델을 가져와 sentence-transformers API 에서 활용할 수 있습니다. training_nli_v2.py, training_sts.py 파일에서 모델 파인튜닝 예시를 확인할 수 있습니다.

from sentence_transformers import SentenceTransformer, models
from ko_sentence_transformers.models import KoBertTransformer
word_embedding_model = KoBertTransformer("monologg/kobert", max_seq_length=75)
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode='mean')
model = SentenceTransformer(modules=[word_embedding_model, pooling_model])

허깅페이스 허브에 업로드된 모델 역시 간단히 불러와 활용할 수 있습니다.

from sentence_transformers import SentenceTransformer, util
import numpy as np

embedder = SentenceTransformer("jhgan/ko-sbert-sts")

# Corpus with example sentences
corpus = ['한 남자가 음식을 먹는다.',
          '한 남자가 빵 한 조각을 먹는다.',
          '그 여자가 아이를 돌본다.',
          '한 남자가 말을 탄다.',
          '한 여자가 바이올린을 연주한다.',
          '두 남자가 수레를 숲 속으로 밀었다.',
          '한 남자가 담으로 싸인 땅에서 백마를 타고 있다.',
          '원숭이 한 마리가 드럼을 연주한다.',
          '치타 한 마리가 먹이 뒤에서 달리고 있다.']

corpus_embeddings = embedder.encode(corpus, convert_to_tensor=True)

# Query sentences:
queries = ['한 남자가 파스타를 먹는다.',
           '고릴라 의상을 입은 누군가가 드럼을 연주하고 있다.',
           '치타가 들판을 가로 질러 먹이를 쫓는다.']

# Find the closest 5 sentences of the corpus for each query sentence based on cosine similarity
top_k = 5
for query in queries:
    query_embedding = embedder.encode(query, convert_to_tensor=True)
    cos_scores = util.pytorch_cos_sim(query_embedding, corpus_embeddings)[0]
    cos_scores = cos_scores.cpu()

    #We use np.argpartition, to only partially sort the top_k results
    top_results = np.argpartition(-cos_scores, range(top_k))[0:top_k]

    print("\n\n======================\n\n")
    print("Query:", query)
    print("\nTop 5 most similar sentences in corpus:")

    for idx in top_results[0:top_k]:
        print(corpus[idx].strip(), "(Score: %.4f)" % (cos_scores[idx]))
======================


Query: 한 남자가 파스타를 먹는다.

Top 5 most similar sentences in corpus:
한 남자가 음식을 먹는다. (Score: 0.7417)
한 남자가 빵 한 조각을 먹는다. (Score: 0.6684)
한 남자가 말을 탄다. (Score: 0.1089)
한 남자가 담으로 싸인 땅에서 백마를 타고 있다. (Score: 0.0717)
두 남자가 수레를 숲 속으로 밀었다. (Score: 0.0244)


======================


Query: 고릴라 의상을 입은 누군가가 드럼을 연주하고 있다.

Top 5 most similar sentences in corpus:
원숭이 한 마리가 드럼을 연주한다. (Score: 0.7057)
한 여자가 바이올린을 연주한다. (Score: 0.3154)
치타 한 마리가 먹이 뒤에서 달리고 있다. (Score: 0.2171)
두 남자가 수레를 숲 속으로 밀었다. (Score: 0.1294)
그 여자가 아이를 돌본다. (Score: 0.0979)


======================


Query: 치타가 들판을 가로 질러 먹이를 쫓는다.

Top 5 most similar sentences in corpus:
치타 한 마리가 먹이 뒤에서 달리고 있다. (Score: 0.7986)
두 남자가 수레를 숲 속으로 밀었다. (Score: 0.3255)
한 남자가 담으로 싸인 땅에서 백마를 타고 있다. (Score: 0.2688)
한 남자가 말을 탄다. (Score: 0.1530)
원숭이 한 마리가 드럼을 연주한다. (Score: 0.0913)

KorSTS Benchmarks

카카오브레인의 KorNLU 데이터셋을 활용하여 sentence-BERT 모델을 학습시킨 후 다국어 모델의 성능과 비교한 결과입니다. ko-sbert-nli 모델은 KorNLI 데이터셋을 활용하여 학습되었고, ko-sbert-sts 모델은 KorSTS 데이터셋을 활용하여 학습되었습니다. ko-sbert-multitask 모델은 두 데이터셋을 모두 활용하여 멀티태스크로 학습되었습니다. 학습 및 성능 평가 과정은 training_*.py, benchmark.py 에서 확인할 수 있습니다. 학습된 모델은 허깅페이스 모델 허브에 공개되어있습니다.

모델 Cosine Pearson Cosine Spearman Manhattan Pearson Manhattan Spearman Euclidean Pearson Euclidean Spearman Dot Pearson Dot Spearman
ko-sbert-multitask 83.78 84.02 81.61 81.72 81.68 81.81 79.16 78.69
ko-sbert-nli 82.03 82.36 80.08 79.91 80.06 79.85 75.76 74.72
ko-sbert-sts 80.79 79.91 78.08 77.35 78.03 77.31 75.96 75.20
paraphrase-multilingual-mpnet-base-v2 80.69 82.00 80.33 80.39 80.48 80.61 70.30 68.48
distiluse-base-multilingual-cased-v1 75.50 74.83 73.05 73.15 73.67 73.86 74.79 73.95
distiluse-base-multilingual-cased-v2 75.62 74.83 73.03 72.87 73.68 73.62 63.80 62.35
paraphrase-multilingual-MiniLM-L12-v2 73.87 74.44 72.55 71.95 72.45 71.85 55.86 55.26

References

  • Ham, J., Choe, Y. J., Park, K., Choi, I., & Soh, H. (2020). Kornli and korsts: New benchmark datasets for korean natural language understanding. arXiv preprint arXiv:2004.03289
  • Reimers, Nils and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks.” ArXiv abs/1908.10084 (2019)
  • Ko-Sentence-BERT-SKTBERT
  • KoBERT
Owner
Junghyun
Junghyun
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.

Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da

Jeff Johannsen 3 Nov 27, 2022
Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

NAVER AI 47 Dec 20, 2022
The simple project to separate mixed voice (2 clean voices) to 2 separate voices.

Speech Separation The simple project to separate mixed voice (2 clean voices) to 2 separate voices. Result Example (Clisk to hear the voices): mix ||

vuthede 31 Oct 30, 2022
Repository for Graph2Pix: A Graph-Based Image to Image Translation Framework

Graph2Pix: A Graph-Based Image to Image Translation Framework Installation Install the dependencies in env.yml $ conda env create -f env.yml $ conda a

18 Nov 17, 2022
Chinese Named Entity Recognization (BiLSTM with PyTorch)

BiLSTM-CRF for Name Entity Recognition PyTorch version A PyTorch implemention of Bi-LSTM-CRF model for Chinese Named Entity Recognition. 使用 PyTorch 实现

5 Jun 01, 2022
Python package for performing Entity and Text Matching using Deep Learning.

DeepMatcher DeepMatcher is a Python package for performing entity and text matching using deep learning. It provides built-in neural networks and util

461 Dec 28, 2022
Snips Python library to extract meaning from text

Snips NLU Snips NLU (Natural Language Understanding) is a Python library that allows to extract structured information from sentences written in natur

Snips 3.7k Dec 30, 2022
test

Lidar-data-decode In this project, you can decode your lidar data frame(pcap file) and make your own datasets(test dataset) in Windows without any hug

46 Dec 05, 2022
Negative sampling for solving the unlabeled entity problem in NER. ICLR-2021 paper: Empirical Analysis of Unlabeled Entity Problem in Named Entity Recognition.

Negative Sampling for NER Unlabeled entity problem is prevalent in many NER scenarios (e.g., weakly supervised NER). Our paper in ICLR-2021 proposes u

Yangming Li 128 Dec 29, 2022
Utilize Korean BERT model in sentence-transformers library

ko-sentence-transformers 이 프로젝트는 KoBERT 모델을 sentence-transformers 에서 보다 쉽게 사용하기 위해 만들어졌습니다. Ko-Sentence-BERT-SKTBERT 프로젝트에서는 KoBERT 모델을 sentence-trans

Junghyun 40 Dec 20, 2022
This project uses unsupervised machine learning to identify correlations between daily inoculation rates in the USA and twitter sentiment in regards to COVID-19.

Twitter COVID-19 Sentiment Analysis Members: Christopher Bach | Khalid Hamid Fallous | Jay Hirpara | Jing Tang | Graham Thomas | David Wetherhold Pro

4 Oct 15, 2022
🧪 Cutting-edge experimental spaCy components and features

spacy-experimental: Cutting-edge experimental spaCy components and features This package includes experimental components and features for spaCy v3.x,

Explosion 65 Dec 30, 2022
kochat

Kochat 챗봇 빌더는 성에 안차고, 자신만의 딥러닝 챗봇 애플리케이션을 만드시고 싶으신가요? Kochat을 이용하면 손쉽게 자신만의 딥러닝 챗봇 애플리케이션을 빌드할 수 있습니다. # 1. 데이터셋 객체 생성 dataset = Dataset(ood=True) #

1 Oct 25, 2021
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies, including systems for speech recognition, speaker recognit

SpeechBrain 5.1k Jan 09, 2023
Yodatranslator is a simple translator English to Yoda-language

yodatranslator Overview yodatranslator is a simple translator English to Yoda-language. Project is created for educational purposes. It is intended to

1 Nov 11, 2021
Header-only C++ HNSW implementation with python bindings

Hnswlib - fast approximate nearest neighbor search Header-only C++ HNSW implementation with python bindings. NEWS: version 0.6 Thanks to (@dyashuni) h

2.3k Jan 05, 2023
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
뉴스 도메인 질의응답 시스템 (21-1학기 졸업 프로젝트)

뉴스 도메인 질의응답 시스템 본 프로젝트는 뉴스기사에 대한 질의응답 서비스 를 제공하기 위해서 진행한 프로젝트입니다. 약 3개월간 ( 21. 03 ~ 21. 05 ) 진행하였으며 Transformer 아키텍쳐 기반의 Encoder를 사용하여 한국어 질의응답 데이터셋으로

TaegyeongEo 4 Jul 08, 2022
Fully featured implementation of Routing Transformer

Routing Transformer A fully featured implementation of Routing Transformer. The paper proposes using k-means to route similar queries / keys into the

Phil Wang 246 Jan 02, 2023
CCF BDCI 2020 房产行业聊天问答匹配赛道 A榜47/2985

CCF BDCI 2020 房产行业聊天问答匹配 A榜47/2985 赛题描述详见:https://www.datafountain.cn/competitions/474 文件说明 data: 存放训练数据和测试数据以及预处理代码 model_bert.py: 网络模型结构定义 adv_train

shuo 40 Sep 28, 2022