Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

Overview

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank which as been accepted as an oral paper in the IEEE International Conference on Computer Vision (ICCV) 2021.

This code is based on ClassMix code

Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

Prerequisites

  • CUDA/CUDNN
  • Python3
  • Packages found in requirements.txt

Contact

If any question, please either open a github issue or contact via email to: [email protected]

Datasets

Create a folder outsite the code folder:

mkdir ../data/

Cityscapes

mkdir ../data/CityScapes/

Download the dataset from (Link).

Download the files named 'gtFine_trainvaltest.zip', 'leftImg8bit_trainvaltest.zip' and extract in ../data/Cityscapes/

Pascal VOC 2012

mkdir ../data/VOC2012/

Download the dataset from (Link).

Download the file 'training/validation data' under 'Development kit' and extract in ../data/VOC2012/

GTA5

mkdir ../data/GTA5/

Download the dataset from (Link). Unzip all the datasets parts to create an structure like this:

../data/GTA5/images/val/*.png
../data/GTA5/images/train/*.png
../data/GTA5/labels/val/*.png
../data/GTA5/labels/train/*.png

Then, reformat the label images from colored images to training ids. For that, execute this:

python3 utils/translate_labels.py

Experiments

Here there are some examples for replicating the experiments from the paper. Implementation details are specified in the paper (section 4.2) any modification could potentially affect to the final result.

Semi-Supervised

Search here for the desired configuration:

ls ./configs/

For example, for this configuration:

  • Dataset: CityScapes
  • % of labels: 1/30
  • Pretrain: COCO
  • Split: 0
  • Network: Deeplabv2

Execute:

python3 trainSSL.py --config ./configs/configSSL_city_1_30_split0_COCO.json 

Another example, for this configuration:

  • Dataset: CityScapes
  • % of labels: 1/30
  • Pretrain: imagenet
  • Split: 0
  • Network: Deeplabv3+

Execute:

python3 trainSSL.py --config ./configs/configSSL_city_1_30_split0_v3.json 

For example, for this configuration:

  • Dataset: PASCAL VOC
  • % of labels: 1/50
  • Pretrain: COCO
  • Split: 0

Execute:

python3 trainSSL.py --config ./configs/configSSL_pascal_1_50_split0_COCO.json 

For replicating paper experiments, just execute the training of the specific set-up to replicate. We already provide all the configuration files used in the paper. For modifying them and a detail description of all the parameters in the configuration files, check this example:

Configuration File Description

2 for random splits "labeled_samples": 744, # Number of labeled samples to use for supervised learning. The rest will be use without labels. Options: any integer "input_size": "512,512" # Image crop size Options: any integer tuple } }, "seed": 5555, # seed for randomization. Options: any integer "ignore_label": 250, # ignore label value. Options: any integer "utils": { "save_checkpoint_every": 10000, # The model will be saved every this number of iterations. Options: any integer "checkpoint_dir": "../saved/DeepLab", # Path to save the models. Options: any path "val_per_iter": 1000, # The model will be evaluated every this number of iterations. Options: any integer "save_best_model": true # Whether to use teacher model for generating the psuedolabels. The student model wil obe used otherwise. Options: boolean } }">
{
  "model": "DeepLab", # Network architecture. Options: Deeplab
  "version": "2", # Version of the network architecture. Options: {2, 3} for deeplabv2 and deeplabv3+
  "dataset": "cityscapes", # Dataset to use. Options: {"cityscapes", "pascal"}

  "training": { 
    "batch_size": 5, # Batch size to use. Options: any integer
    "num_workers": 3, # Number of cpu workers (threads) to use for laoding the dataset. Options: any integer
    "optimizer": "SGD", # Optimizer to use. Options: {"SGD"}
    "momentum": 0.9, # momentum for SGD optimizer, Options: any float 
    "num_iterations": 100000, # Number of iterations to train. Options: any integer
    "learning_rate": 2e-4, # Learning rate. Options: any float
    "lr_schedule": "Poly", # decay scheduler for the learning rate. Options: {"Poly"}
    "lr_schedule_power": 0.9, # Power value for the Poly scheduler. Options: any float
    "pretraining": "COCO", # Pretraining to use. Options: {"COCO", "imagenet"}
    "weight_decay": 5e-4, # Weight decay. Options: any float
    "use_teacher_train": true, # Whether to use the teacher network to generate pseudolabels. Use student otherwise. Options: boolean. 
    "save_teacher_test": false, # Whether to save the teacher network as the model for testing. Use student otherwise. Options: boolean. 
    
    "data": {
      "split_id_list": 0, # Data splits to use. Options: {0, 1, 2} for pre-computed splits. N >2 for random splits
      "labeled_samples": 744, # Number of labeled samples to use for supervised learning. The rest will be use without labels. Options: any integer
      "input_size": "512,512" # Image crop size  Options: any integer tuple
    }

  },
  "seed": 5555, # seed for randomization. Options: any integer
  "ignore_label": 250, # ignore label value. Options: any integer

  "utils": {
    "save_checkpoint_every": 10000,  # The model will be saved every this number of iterations. Options: any integer
    "checkpoint_dir": "../saved/DeepLab", # Path to save the models. Options: any path
    "val_per_iter": 1000, # The model will be evaluated every this number of iterations. Options: any integer
    "save_best_model": true # Whether to use teacher model for generating the psuedolabels. The student model wil obe used otherwise. Options: boolean
  }
}

Memory Restrictions

All experiments have been run in an NVIDIA Tesla V100. To try to fit the training in a smaller GPU, try to follow this tips:

  • Reduce batch_size from the configuration file
  • Reduce input_size from the configuration file
  • Instead of using trainSSL.py use trainSSL_less_memory.py which optimized labeled and unlabeled data separate steps.

For example, for this configuration:

  • Dataset: PASCAL VOC
  • % of labels: 1/50
  • Pretrain: COCO
  • Split: 0
  • Batch size: 8
  • Crop size: 256x256 Execute:
python3 trainSSL_less_memory.py --config ./configs/configSSL_pascal_1_50_split2_COCO_reduced.json 

Semi-Supervised Domain Adaptation

Experiments for domain adaptation from GTA5 dataset to Cityscapes.

For example, for configuration:

  • % of labels: 1/30
  • Pretrain: Imagenet
  • Split: 0

Execute:

python3 trainSSL_domain_adaptation_targetCity.py --config ./configs/configSSL_city_1_30_split0_imagenet.json 

Evaluation

The training code will evaluate the training model every some specific number of iterations (modify the parameter val_per_iter in the configuration file).

Best evaluated model will be printed at the end of the training.

For every training, several weights will be saved under the path specified in the parameter checkpoint_dir of the configuration file.

One model every save_checkpoint_every (see configuration file) will be saved, plus the best evaluated model.

So, the model has trained we can already know the performance.

For a later evaluation, just execute the next command specifying the model to evaluate in the model-path argument:

python3 evaluateSSL.py --model-path ../saved/DeepLab/best.pth

Citation

If you find this work useful, please consider citing:

@inproceedings{alonso2021semi,
  title={Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank},
  author={Alonso, I{\~n}igo and Sabater, Alberto and Ferstl, David and Montesano, Luis and Murillo, Ana C},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  year={2021}
}

License

Thi code is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Owner
Iñigo Alonso Ruiz
PhD student (University of Zaragoza)
Iñigo Alonso Ruiz
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023
Dataset and Source code of paper 'Enhancing Keyphrase Extraction from Academic Articles with their Reference Information'.

Enhancing Keyphrase Extraction from Academic Articles with their Reference Information Overview Dataset and code for paper "Enhancing Keyphrase Extrac

15 Nov 24, 2022
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
lightweight python wrapper for vowpal wabbit

vowpal_porpoise Lightweight python wrapper for vowpal_wabbit. Why: Scalable, blazingly fast machine learning. Install Install vowpal_wabbit. Clone and

Joseph Reisinger 163 Nov 24, 2022
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022
Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning

Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning This is the official repository of "Camera Distortion-

Hanbyel Cho 12 Oct 06, 2022
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

ETHZ V4RL 183 Dec 27, 2022
One Million Scenes for Autonomous Driving

ONCE Benchmark This is a reproduced benchmark for 3D object detection on the ONCE (One Million Scenes) dataset. The code is mainly based on OpenPCDet.

148 Dec 28, 2022
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation The paper: https://arxiv.org/abs/1704.03296 What makes

Jacob Gildenblat 322 Dec 17, 2022
sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

445 Jan 02, 2023
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
Supervised domain-agnostic prediction framework for probabilistic modelling

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data

The Alan Turing Institute 112 Oct 23, 2022
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022