[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

Related tags

Deep Learninginsgen
Overview

InsGen - Data-Efficient Instance Generation from Instance Discrimination

image

Data-Efficient Instance Generation from Instance Discrimination
Ceyuan Yang, Yujun Shen, Yinghao Xu, Bolei Zhou
arXiv preprint arXiv: 2106.04566

[Paper] [Project Page]

In this work, we develop a novel data-efficient Instance Generation (InsGen) method for training GANs with limited data. With the instance discrimination as an auxiliary task, our method makes the best use of both real and fake images to train the discriminator. The discriminator in turn guides the generator to synthesize as many diverse images as possible. Experiments under different data regimes show that InsGen brings a substantial improvement over the baseline in terms of both image quality and image diversity, and outperforms previous data augmentation algorithms by a large margin.

Qualitative results

Here we provide some synthesized samples with different numbers of training images and correspoding FID. Full codebase and weights are coming soon. image

Inference

Here, all pretrained models can be downloaded from Google Drive:

Model FID Link
AFHQ512-CAT 2.60 link
AFHQ512-DOG 5.44 link
AFHQ512-WILD 1.77 link
Model FID Link
FFHQ256-2K 11.92 link
FFHQ256-10K 4.90 link
FFHQ256-140K 3.31 link

You can download one of them and put it under MODEL_ZOO directory, then synthesize images via

# Generate AFHQ512-CAT with truncation.
python generate.py --network=${MODEL_ZOO}/afhqcat.pkl \
                   --outdir=${TARGET_DIR} \
                   --trunc=0.7 \
                   --seeds=0-10

Training

This repository is built based on styleGAN2-ada-pytorch. Therefore, please prepare datasets first use dataset_tool.py. On top of Generative Adversarial Networks (GANs), we introduce contrastive loss into the training of discriminator, following MoCo. Concretely, the discriminator is used to extract features from images (either real or synthesized) and then trained with an auxiliary task by distinguishing every individual image.

As described in training/contrastive_head.py, we add two addition heads on top of the original discriminator. These two heads are used to project features extracted from real and fake data onto a unit ball respectively. More details can be found in paper. Note that InsGen can be easily applied to any GAN model by merely introducing two contrastive heads. According to MoCo, the feature extractor should be updated in a momentum manner. Here, in InsGen, the contrastive heads are updated in the forward() function, while the discriminator is updated in training/training_loop.py (see D_ema).

Please use the following command to start your own training:

python train.py --gpus=8 \
                --data=${DATA_PATH} \
                --cfg=paper256 \
                --outdir=training_example

In this example, the results are saved to a created director training_example. --cfg specifies the training configuration, which can be further customized with additional options:

  • --no_insgen disables InsGen, back to original StyleGAN2-ADA.
  • --rqs overrides the number of real image queue size. (default: 5% of the total number of training samples)
  • --fqs overrides the number of fake image queue size. More samples are beneficial, especially when the training samples are limited. (default: 5% of the total number of training samples)
  • --gamma overrides the R1 gamma (i.e., gradient penalty). As described in styleGAN2-ada-pytorch, training can be sensitive to this hyper-parameter. It would be better to try some different values. Here, we recommend using a smaller one than that in original StyleGAN2-ADA.

More functions would be supported after this projest is merged into our genforce. Please stay tuned!

License

This work is made available under the Nvidia Source Code License.

Acknowledgements

We thank Janne Hellsten and Tero Karras for the pytorch version codebase of their styleGAN2-ada-pytorch.

BibTeX

@article{yang2021insgen,
  title   = {Data-Efficient Instance Generation from Instance Discrimination},
  author  = {Yang, Ceyuan and Shen, Yujun and Xu, Yinghao and Zhou, Bolei},
  journal = {arXiv preprint arXiv:2106.04566},
  year    = {2021}
}
Owner
GenForce: May Generative Force Be with You
Research on Generative Modeling in Zhou Group
GenForce: May Generative Force Be with You
Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite.

TFLite-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite. Stereo depth estimati

Ibai Gorordo 4 Feb 14, 2022
This repository contains the files for running the Patchify GUI.

Repository Name Train-Test-Validation-Dataset-Generation App Name Patchify Description This app is designed for crop images and creating smal

Salar Ghaffarian 9 Feb 15, 2022
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022
[cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

PS-MT [cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation by Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu, Vasile

Yuyuan Liu 132 Jan 03, 2023
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch]

Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch] Abstract Snapshot compressive imaging (SCI) can rec

integirty 6 Nov 01, 2022
Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting

Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting #Dataset The folder "Dataset" contains the dataset use in this work and m

0 Jan 08, 2022
[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

DeepDeform (CVPR'2020) DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow imag

Aljaz Bozic 165 Jan 09, 2023
ColBERT: Contextualized Late Interaction over BERT (SIGIR'20)

Update: if you're looking for ColBERTv2 code, you can find it alongside a new simpler API, in the branch new_api. ColBERT ColBERT is a fast and accura

Stanford Future Data Systems 637 Jan 08, 2023
OneShot Learning-based hotword detection.

EfficientWord-Net Hotword detection based on one-shot learning Home assistants require special phrases called hotwords to get activated (eg:"ok google

ANT-BRaiN 102 Dec 25, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Fudan Zhang Vision Group 897 Jan 05, 2023
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Phil Wang 62 Dec 20, 2022
GARCH and Multivariate LSTM forecasting models for Bitcoin realized volatility with potential applications in crypto options trading, hedging, portfolio management, and risk management

Bitcoin Realized Volatility Forecasting with GARCH and Multivariate LSTM Author: Chi Bui This Repository Repository Directory ├── README.md

Chi Bui 113 Dec 29, 2022
SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

SCALoss PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022). Introduction IoU-based lo

TuZheng 20 Sep 07, 2022
《Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis》(2021)

Image2Reverb Image2Reverb is an end-to-end neural network that generates plausible audio impulse responses from single images of acoustic environments

Nikhil Singh 48 Nov 27, 2022
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

1 Jan 06, 2022