Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

Overview

PWC

SEAM Match-RCNN

Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper

CC BY-NC-SA 4.0

Installation

Requirements:

  • Pytorch 1.5.1 or more recent, with cudatoolkit (10.2)
  • torchvision
  • tensorboard
  • cocoapi
  • OpenCV Python
  • tqdm
  • cython
  • CUDA >= 10

Step-by-step installation

# first, make sure that your conda is setup properly with the right environment
# for that, check that `which conda`, `which pip` and `which python` points to the
# right path. From a clean conda env, this is what you need to do

conda create --name seam -y python=3
conda activate seam

pip install cython tqdm opencv-python

# follow PyTorch installation in https://pytorch.org/get-started/locally/
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch

conda install tensorboard

export INSTALL_DIR=$PWD

# install pycocotools
cd $INSTALL_DIR
git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
python setup.py build_ext install

# download SEAM
cd $INSTALL_DIR
git clone https://github.com/VIPS4/SEAM-Match-RCNN.git
cd SEAM-Match-RCNN
mkdir data
mkdir ckpt

unset INSTALL_DIR

Dataset

SEAM Match-RCNN has been trained and test on MovingFashion and DeepFashion2 datasets. Follow the instruction to download and extract the datasets.

We suggest to download the datasets inside the folder data.

MovingFashion

MovingFashion dataset is available for academic purposes here.

Deepfashion2

DeepFashion2 dataset is available here. You need fill in the form to get password for unzipping files.

Once the dataset will be extracted, use the reserved DeepFtoCoco.py script to convert the annotations in COCO format, specifying dataset path.

python DeepFtoCoco.py --path <dataset_root>

Training

We provide the scripts to train both Match-RCNN and SEAM Match-RCNN. Check the scripts for all the possible parameters.

Single GPU

#training of Match-RCNN
python train_matchrcnn.py --root_train <path_of_images_folder> --train_annots <json_path> --save_path <save_path> 

#training on movingfashion
python train_movingfashion.py --root <path_of_dataset_root> --train_annots <json_path> --test_annots <json_path> --pretrained_path <path_of_matchrcnn_model>


#training on multi-deepfashion2
python train_multiDF2.py --root <path_of_dataset_root> --train_annots <json_path> --test_annots <json_path> --pretrained_path <path_of_matchrcnn_model>

Multi GPU

We use internally torch.distributed.launch in order to launch multi-gpu training. This utility function from PyTorch spawns as many Python processes as the number of GPUs we want to use, and each Python process will only use a single GPU.

#training of Match-RCNN
python -m torch.distributed.launch --nproc_per_node=<NUM_GPUS> train_matchrcnn.py --root_train <path_of_images_folder> --train_annots <json_path> --save_path <save_path>

#training on movingfashion
python -m torch.distributed.launch --nproc_per_node=<NUM_GPUS> train_movingfashion.py --root <path_of_dataset_root> --train_annots <json_path> --test_annots <json_path> --pretrained_path <path_of_matchrcnn_model> 

#training on multi-deepfashion2
python -m torch.distributed.launch --nproc_per_node=<NUM_GPUS> train_multiDF2.py --root <path_of_dataset_root> --train_annots <json_path> --test_annots <json_path> --pretrained_path <path_of_matchrcnn_model> 

Pre-Trained models

It is possibile to start training using the MatchRCNN pre-trained model.

[MatchRCNN] Pre-trained model on Deepfashion2 is available to download here. This model can be used to start the training at the second phase (training directly SEAM Match-RCNN).

We suggest to download the model inside the folder ckpt.

Evaluation

To evaluate the models of SEAM Match-RCNN please use the following scripts.

#evaluation on movingfashion
python evaluate_movingfashion.py --root_test <path_of_dataset_root> --test_annots <json_path> --ckpt_path <checkpoint_path>


#evaluation on multi-deepfashion2
python evaluate_multiDF2.py --root_test <path_of_dataset_root> --test_annots <json_path> --ckpt_path <checkpoint_path>

Citation

@misc{godi2021movingfashion,
      title={MovingFashion: a Benchmark for the Video-to-Shop Challenge}, 
      author={Marco Godi and Christian Joppi and Geri Skenderi and Marco Cristani},
      year={2021},
      eprint={2110.02627},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

CC BY-NC-SA 4.0

Owner
HumaticsLAB
Video and Image Processing for Fashion
HumaticsLAB
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.

Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:

Gaurav 16 Oct 29, 2022
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
🎯 A comprehensive gradient-free optimization framework written in Python

Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not

Devin Soni 565 Dec 26, 2022
Generating Band-Limited Adversarial Surfaces Using Neural Networks

Generating Band-Limited Adversarial Surfaces Using Neural Networks This is the official repository of the technical report that was published on arXiv

3 Jul 26, 2022
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. ⚡ Overview Fidesops (fee-dez-äps, combination of the Lati

Ethyca 44 Dec 06, 2022
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
A repository that finds a person who looks like you by using face recognition technology.

Find Your Twin Hello everyone, I've always wondered how casting agencies do the casting for a scene where a certain actor is young or old for a movie

Cengizhan Yurdakul 3 Jan 29, 2022
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
Super Resolution for images using deep learning.

Neural Enhance Example #1 — Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens. As seen on TV! What if you could increase

Alex J. Champandard 11.7k Dec 29, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
Detector for Log4Shell exploitation attempts

log4shell-detector Detector for Log4Shell exploitation attempts Idea The problem with the log4j CVE-2021-44228 exploitation is that the string can be

Florian Roth 729 Dec 25, 2022
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience

Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience This repository is the official implementation of [https://www.bi

Eulerlab 6 Oct 09, 2022
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.

Semi-supervised-learning-for-medical-image-segmentation. Recently, semi-supervised image segmentation has become a hot topic in medical image computin

Healthcare Intelligence Laboratory 1.3k Jan 03, 2023
Diverse Object-Scene Compositions For Zero-Shot Action Recognition

Diverse Object-Scene Compositions For Zero-Shot Action Recognition This repository contains the source code for the use of object-scene compositions f

7 Sep 21, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
ICCV2021 Expert-Goal Trajectory Prediction

ICCV 2021: Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples This repository contains the code for the paper Where are yo

hz 21 Dec 12, 2022
Voice control for Garry's Mod

WIP: Talonvoice GMod integrations Very work in progress voice control demo for Garry's Mod. HOWTO Install https://talonvoice.com/ Press https://i.imgu

Meta Construct 5 Nov 15, 2022