Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

Overview

PWC

SEAM Match-RCNN

Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper

CC BY-NC-SA 4.0

Installation

Requirements:

  • Pytorch 1.5.1 or more recent, with cudatoolkit (10.2)
  • torchvision
  • tensorboard
  • cocoapi
  • OpenCV Python
  • tqdm
  • cython
  • CUDA >= 10

Step-by-step installation

# first, make sure that your conda is setup properly with the right environment
# for that, check that `which conda`, `which pip` and `which python` points to the
# right path. From a clean conda env, this is what you need to do

conda create --name seam -y python=3
conda activate seam

pip install cython tqdm opencv-python

# follow PyTorch installation in https://pytorch.org/get-started/locally/
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch

conda install tensorboard

export INSTALL_DIR=$PWD

# install pycocotools
cd $INSTALL_DIR
git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
python setup.py build_ext install

# download SEAM
cd $INSTALL_DIR
git clone https://github.com/VIPS4/SEAM-Match-RCNN.git
cd SEAM-Match-RCNN
mkdir data
mkdir ckpt

unset INSTALL_DIR

Dataset

SEAM Match-RCNN has been trained and test on MovingFashion and DeepFashion2 datasets. Follow the instruction to download and extract the datasets.

We suggest to download the datasets inside the folder data.

MovingFashion

MovingFashion dataset is available for academic purposes here.

Deepfashion2

DeepFashion2 dataset is available here. You need fill in the form to get password for unzipping files.

Once the dataset will be extracted, use the reserved DeepFtoCoco.py script to convert the annotations in COCO format, specifying dataset path.

python DeepFtoCoco.py --path <dataset_root>

Training

We provide the scripts to train both Match-RCNN and SEAM Match-RCNN. Check the scripts for all the possible parameters.

Single GPU

#training of Match-RCNN
python train_matchrcnn.py --root_train <path_of_images_folder> --train_annots <json_path> --save_path <save_path> 

#training on movingfashion
python train_movingfashion.py --root <path_of_dataset_root> --train_annots <json_path> --test_annots <json_path> --pretrained_path <path_of_matchrcnn_model>


#training on multi-deepfashion2
python train_multiDF2.py --root <path_of_dataset_root> --train_annots <json_path> --test_annots <json_path> --pretrained_path <path_of_matchrcnn_model>

Multi GPU

We use internally torch.distributed.launch in order to launch multi-gpu training. This utility function from PyTorch spawns as many Python processes as the number of GPUs we want to use, and each Python process will only use a single GPU.

#training of Match-RCNN
python -m torch.distributed.launch --nproc_per_node=<NUM_GPUS> train_matchrcnn.py --root_train <path_of_images_folder> --train_annots <json_path> --save_path <save_path>

#training on movingfashion
python -m torch.distributed.launch --nproc_per_node=<NUM_GPUS> train_movingfashion.py --root <path_of_dataset_root> --train_annots <json_path> --test_annots <json_path> --pretrained_path <path_of_matchrcnn_model> 

#training on multi-deepfashion2
python -m torch.distributed.launch --nproc_per_node=<NUM_GPUS> train_multiDF2.py --root <path_of_dataset_root> --train_annots <json_path> --test_annots <json_path> --pretrained_path <path_of_matchrcnn_model> 

Pre-Trained models

It is possibile to start training using the MatchRCNN pre-trained model.

[MatchRCNN] Pre-trained model on Deepfashion2 is available to download here. This model can be used to start the training at the second phase (training directly SEAM Match-RCNN).

We suggest to download the model inside the folder ckpt.

Evaluation

To evaluate the models of SEAM Match-RCNN please use the following scripts.

#evaluation on movingfashion
python evaluate_movingfashion.py --root_test <path_of_dataset_root> --test_annots <json_path> --ckpt_path <checkpoint_path>


#evaluation on multi-deepfashion2
python evaluate_multiDF2.py --root_test <path_of_dataset_root> --test_annots <json_path> --ckpt_path <checkpoint_path>

Citation

@misc{godi2021movingfashion,
      title={MovingFashion: a Benchmark for the Video-to-Shop Challenge}, 
      author={Marco Godi and Christian Joppi and Geri Skenderi and Marco Cristani},
      year={2021},
      eprint={2110.02627},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

CC BY-NC-SA 4.0

Owner
HumaticsLAB
Video and Image Processing for Fashion
HumaticsLAB
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
Algo-burn - Script to configure an Algorand address as a "burn" address for one or more ASA tokens

Algorand Burn Address This is a simple script to illustrate how a "burn address"

GSD 5 May 10, 2022
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank Noé and co-workers) 50 Dec 16, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
A tf.keras implementation of Facebook AI's MadGrad optimization algorithm

MADGRAD Optimization Algorithm For Tensorflow This package implements the MadGrad Algorithm proposed in Adaptivity without Compromise: A Momentumized,

20 Aug 18, 2022
Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos Carreño 108 Dec 27, 2022
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
Code for Temporally Abstract Partial Models

Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar

DeepMind 19 Jul 13, 2022
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
Deep Learning Models for Causal Inference

Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.

Bernard J Koch 151 Dec 31, 2022
Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Behind the Curtain: Learning Occluded Shapes for 3D Object Detection Acknowledgement We implement our model, BtcDet, based on [OpenPcdet 0.3.0]. Insta

Qiangeng Xu 163 Dec 19, 2022
Download and preprocess popular sequential recommendation datasets

Sequential Recommendation Datasets This repository collects some commonly used sequential recommendation datasets in recent research papers and provid

125 Dec 06, 2022
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

Instead, two models for appearance modeling are included, together with the open-source BAGS model and the full set of code for inference. With this code, you can achieve around 79 Oct 08, 2022

TinyML Cookbook, published by Packt

TinyML Cookbook This is the code repository for TinyML Cookbook, published by Packt. Author: Gian Marco Iodice Publisher: Packt About the book This bo

Packt 93 Dec 29, 2022