code for Image Manipulation Detection by Multi-View Multi-Scale Supervision

Related tags

Deep LearningMVSS-Net
Overview

MVSS-Net

Code and models for ICCV 2021 paper: Image Manipulation Detection by Multi-View Multi-Scale Supervision

Image text

Update

To Be Done.

  • 21.12.17, Something new: MVSS-Net++

We now have an improved version of MVSS-Net, denoted as MVSS-Net++. Check here.

Environment

  • Ubuntu 16.04.6 LTS
  • Python 3.6
  • cuda10.1+cudnn7.6.3

Requirements

Usage

Dataset

An example of the dataset index file is given as data/CASIAv1plus.txt, where each line contains:

img_path mask_path label
  • 0 represents the authentic and 1 represents the manipulated.
  • For an authentic image, the mask_path is "None".
  • For wild images without mask groundtruth, the index should at least contain "img_path" per line.
Training sets
Test sets
  • DEFACTO-12k
  • Columbia
  • COVER
  • NIST16
  • CASIAv1plus: Note that some of the authentic images in CASIAv1 also appear in CASIAv2. With those images fully replaced by Corel images that are new to both CASIAv1 and CASIAv2, we constructed a revision of CASIAv1 termed as CASIAv1plus. We recommend to use CASIAv1plus as an alternative to the original CASIAv1.

Trained Models

We offer FCNs and MVSS-Nets trained on CASIAv2 and DEFACTO_84k, respectively. Please download the models and place them in the ckpt directory:

The performance of these models for image-level manipulation detection (metric: AUC and image-level F1) is as follows. More details are reported in the paper.

Performance metric: AUC
Model Training data CASIAv1plus Columbia COVER DEFACTO-12k
MVSS_Net CASIAv2 0.932 0.980 0.731 0.573
MVSS_Net DEFACTO-84k 0.771 0.563 0.525 0.886
FCN CASIAv2 0.769 0.762 0.541 0.551
FCN DEFACTO-84k 0.629 0.535 0.543 0.840
Performance metric: Image-level F1 (threshold=0.5)
Model Training data CASIAv1plus Columbia COVER DEFACTO-12k
MVSS_Net CASIAv2 0.759 0.802 0.244 0.404
MVSS_Net DEFACTO-84k 0.685 0.353 0.360 0.799
FCN CASIAv2 0.684 0.481 0.180 0.458
FCN DEFACTO-84k 0.561 0.492 0.511 0.709

Inference & Evaluation

You can specify which pre-trained model to use by setting model_path in do_pred_and_eval.sh. Given a test_collection (e.g. CASIAv1plus or DEFACTO12k-test), the prediction maps and evaluation results will be saved under save_dir. The default threshold is set as 0.5.

bash do_pred_and_eval.sh $test_collection
#e.g. bash do_pred_and_eval.sh CASIAv1plus

For inference only, use following command to skip evaluation:

bash do_pred.sh $test_collection
#e.g. bash do_pred.sh CASIAv1plus

Demo

  • demo.ipynb: A step-by-step notebook tutorial showing the usage of a pre-trained model to detect manipulation in a specific image.

Citation

If you find this work useful in your research, please consider citing:

@InProceedings{MVSS_2021ICCV,  
author = {Chen, Xinru and Dong, Chengbo and Ji, Jiaqi and Cao, juan and Li, Xirong},  
title = {Image Manipulation Detection by Multi-View Multi-Scale Supervision},  
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},  
year = {2021}  
}

Acknowledgments

Contact

If you enounter any issue when running the code, please feel free to reach us either by creating a new issue in the github or by emailing

Owner
dong_chengbo
dong_chengbo
Supervised domain-agnostic prediction framework for probabilistic modelling

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data

The Alan Turing Institute 112 Oct 23, 2022
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
A module that used for encrypt code which includes RSA and AES

软件加密模块 requirement: Crypto,pycryptodome,pyqt5 本地加密信息为随机字符串 使用说明 命令行参数 -h 帮助 -checkWorking 检查是否能正常工作,后接1确认指令 -checkEndDate 检查截至日期,后接1确认指令 -activateCode

2 Sep 27, 2022
Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning"

Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning" Getting started Prerequisites CUD

70 Dec 02, 2022
Code for pre-training CharacterBERT models (as well as BERT models).

Pre-training CharacterBERT (and BERT) This is a repository for pre-training BERT and CharacterBERT. DISCLAIMER: The code was largely adapted from an o

Hicham EL BOUKKOURI 31 Dec 05, 2022
Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人

paddle-wechaty-Zodiac AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人 12星座若穿越科幻剧,会拥有什么超能力呢?快来迎接你的专属超能力吧! 现在很多年轻人都喜欢看科幻剧,像是复仇者系列,里面有很多英雄、超

105 Dec 22, 2022
Python module providing a framework to trace individual edges in an image using Gaussian process regression.

Edge Tracing using Gaussian Process Regression Repository storing python module which implements a framework to trace individual edges in an image usi

Jamie Burke 7 Dec 27, 2022
Learning to Segment Instances in Videos with Spatial Propagation Network

Learning to Segment Instances in Videos with Spatial Propagation Network This paper is available at the 2017 DAVIS Challenge website. Check our result

Jingchun Cheng 145 Sep 28, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
An official TensorFlow implementation of “CLCC: Contrastive Learning for Color Constancy” accepted at CVPR 2021.

CLCC: Contrastive Learning for Color Constancy (CVPR 2021) Yi-Chen Lo*, Chia-Che Chang*, Hsuan-Chao Chiu, Yu-Hao Huang, Chia-Ping Chen, Yu-Lin Chang,

Yi-Chen (Howard) Lo 58 Dec 17, 2022
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab

DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y

779 Jan 05, 2023
Transformers based fully on MLPs

Awesome MLP-based Transformers papers An up-to-date list of Transformers based fully on MLPs without attention! Why this repo? After transformers and

Fawaz Sammani 35 Dec 30, 2022
PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency"

Improving Generation and Evaluation of Visual Stories via Semantic Consistency PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluat

Adyasha Maharana 28 Dec 08, 2022
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
PyTorch reimplementation of the paper Involution: Inverting the Inherence of Convolution for Visual Recognition [CVPR 2021].

Involution: Inverting the Inherence of Convolution for Visual Recognition Unofficial PyTorch reimplementation of the paper Involution: Inverting the I

Christoph Reich 100 Dec 01, 2022
Vision-and-Language Navigation in Continuous Environments using Habitat

Vision-and-Language Navigation in Continuous Environments (VLN-CE) Project Website — VLN-CE Challenge — RxR-Habitat Challenge Official implementations

Jacob Krantz 132 Jan 02, 2023
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Benedek Rozemberczki 697 Dec 27, 2022