A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

Overview

ClusterGCN

Arxiv codebeat badge repo sizebenedekrozemberczki

A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

Abstract

Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy -- using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71.

This repository provides a PyTorch implementation of ClusterGCN as described in the paper:

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, Cho-Jui Hsieh. KDD, 2019. [Paper]

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx           1.11
tqdm               4.28.1
numpy              1.15.4
pandas             0.23.4
texttable          1.5.0
scipy              1.1.0
argparse           1.1.0
torch              0.4.1
torch-geometric    0.3.1
metis              0.2a.4
scikit-learn       0.20
torch_spline_conv  1.0.4
torch_sparse       0.2.2
torch_scatter      1.0.4
torch_cluster      1.1.5

Installing metis on Ubuntu:

sudo apt-get install libmetis-dev

Datasets

The code takes the **edge list** of the graph in a csv file. Every row indicates an edge between two nodes separated by a comma. The first row is a header. Nodes should be indexed starting with 0. A sample graph for `Pubmed` is included in the `input/` directory. In addition to the edgelist there is a csv file with the sparse features and another one with the target variable.

The **feature matrix** is a sparse one and it is stored as a csv. Features are indexed from 0 consecutively. The feature matrix csv is structured as:

NODE ID FEATURE ID Value
0 3 0.2
0 7 0.5
1 17 0.8
1 4 5.4
1 38 1.3
... ... ...
n 3 0.9

The **target vector** is a csv with two columns and headers, the first contains the node identifiers the second the targets. This csv is sorted by node identifiers and the target column contains the class meberships indexed from zero.

NODE ID Target
0 3
1 1
2 0
3 1
... ...
n 3

Options

The training of a ClusterGCN model is handled by the `src/main.py` script which provides the following command line arguments.

Input and output options

  --edge-path       STR    Edge list csv.         Default is `input/edges.csv`.
  --features-path   STR    Features csv.         Default is `input/features.csv`.
  --target-path     STR    Target classes csv.    Default is `input/target.csv`.

Model options

  --clustering-method   STR     Clustering method.             Default is `metis`.
  --cluster-number      INT     Number of clusters.            Default is 10. 
  --seed                INT     Random seed.                   Default is 42.
  --epochs              INT     Number of training epochs.     Default is 200.
  --test-ratio          FLOAT   Training set ratio.            Default is 0.9.
  --learning-rate       FLOAT   Adam learning rate.            Default is 0.01.
  --dropout             FLOAT   Dropout rate value.            Default is 0.5.
  --layers              LST     Layer sizes.                   Default is [16, 16, 16]. 

Examples

The following commands learn a neural network and score on the test set. Training a model on the default dataset.

$ python src/main.py

Training a ClusterGCN model for a 100 epochs.

$ python src/main.py --epochs 100

Increasing the learning rate and the dropout.

$ python src/main.py --learning-rate 0.1 --dropout 0.9

Training a model with a different layer structure:

$ python src/main.py --layers 64 64

Training a random clustered model:

$ python src/main.py --clustering-method random

License

Comments
  • Segmentation fault While running main.py on Ubuntu

    Segmentation fault While running main.py on Ubuntu

    while i am running main.py i am getting the segmentation fault error on Ubuntu.

    python3 main.py --epochs 100

    +-------------------+----------------------------------------------------------+ | Parameter | Value | +===================+==========================================================+ | Cluster number | 10 | +-------------------+----------------------------------------------------------+ | Clustering method | metis | +-------------------+----------------------------------------------------------+ | Dropout | 0.500 | +-------------------+----------------------------------------------------------+ | Edge path | /home/User/Desktop/ClusterGCN-master/input/edges.csv | +-------------------+----------------------------------------------------------+ | Epochs | 100 | +-------------------+----------------------------------------------------------+ | Features path | /home/User/Desktop/ClusterGCN- | | | master/input/features.csv | +-------------------+----------------------------------------------------------+ | Layers | [16, 16, 16] | +-------------------+----------------------------------------------------------+ | Learning rate | 0.010 | +-------------------+----------------------------------------------------------+ | Seed | 42 | +-------------------+----------------------------------------------------------+ | Target path | /home/User/Desktop/ClusterGCN- | | | master/input//target.csv | +-------------------+----------------------------------------------------------+ | Test ratio | 0.900 | +-------------------+----------------------------------------------------------+

    Metis graph clustering started.

    Segmentation fault

    opened by alamsaqib 4
  • ImportError: No module named 'torch_spline_conv'

    ImportError: No module named 'torch_spline_conv'

    I followed the instructions of installation properly, however, error above occurred.

    After checking the site packages folder, i do not find the file torch_spline_conv. I will google around for finding out why that is happening, but thought you might have some insights

    Any help is appreciated.

    The complete trace is as follows

    File "src/main.py", line 4, in <module>
        from clustergcn import ClusterGCNTrainer
      File "/media/anuj/Softwares & Study Material/Study Material/MS Stuff/RA/ClusterGCN/src/clustergcn.py", line 5, in <module>
        from layers import StackedGCN
      File "/media/anuj/Softwares & Study Material/Study Material/MS Stuff/RA/ClusterGCN/src/layers.py", line 2, in <module>
        from torch_geometric.nn import GCNConv
      File "/home/anuj/virtualenv-forest/gcn/lib/python3.5/site-packages/torch_geometric/nn/__init__.py", line 1, in <module>
        from .conv import *  # noqa
      File "/home/anuj/virtualenv-forest/gcn/lib/python3.5/site-packages/torch_geometric/nn/conv/__init__.py", line 1, in <module>
        from .spline_conv import SplineConv
      File "/home/anuj/virtualenv-forest/gcn/lib/python3.5/site-packages/torch_geometric/nn/conv/spline_conv.py", line 3, in <module>
        from torch_spline_conv import SplineConv as Conv
    ImportError: No module named 'torch_spline_conv'
    
    
    opened by 1byxero 2
  • For ppi

    For ppi

    Hello. Thanks for your work and code. It's great that Cluster-GCN achieves great performance in PPI datasets. But it seems that you have not opened source the code for PPI node classification.

    Do you find the best model on validation dataset at first then test on the unseen test dataset? I notice that GraphStar now is the SOTA. However, they don't use the validation dataset and directly find the best model on test dataset.

    Can you share code of PPI with us and mention how to split dataset in the readme file? It's important for others to follow your great job.

    opened by guochengqian 2
  • Metis hits a Segmentation fault when running _METIS_PartGraphKway

    Metis hits a Segmentation fault when running _METIS_PartGraphKway

    • I'm using the default test input files.

    • I've attached pdb screenshot during the run.

    • Environment: Ubuntu 18.04 Anaconda (Python 3.7.3),
      torch-geometric==1.3.0 torch-scatter==1.3.0 torch-sparse==0.4.0 torch-spline-conv==1.1.0 metis==0.2a.4

    PDB Error Screenshot from 2019-07-04 13-56-16

    Requirements.txt Screenshot from 2019-07-04 14-02-14

    opened by poppingtonic 2
  • The error of metis, Segmentation fault (core dumped)

    The error of metis, Segmentation fault (core dumped)

    I found that I can use the random model to divide the graph, but when using Metis, the code will terminate abnormally. I want to ask what causes this. I change "IDXTYPEWIDTH = os.getenv('METIS_IDXTYPEWIDTH', '32')" in metis.py (line 31) to "IDXTYPEWIDTH = os.getenv('METIS_IDXTYPEWIDTH', '64')", but it doesn't work!!!

    python src/main.py +-------------------+----------------------+ | Parameter | Value | +===================+======================+ | Cluster number | 10 | +-------------------+----------------------+ | Clustering method | metis | +-------------------+----------------------+ | Dropout | 0.500 | +-------------------+----------------------+ | Edge path | ./input/edges.csv | +-------------------+----------------------+ | Epochs | 200 | +-------------------+----------------------+ | Features path | ./input/features.csv | +-------------------+----------------------+ | Layers | [16, 16, 16] | +-------------------+----------------------+ | Learning rate | 0.010 | +-------------------+----------------------+ | Seed | 42 | +-------------------+----------------------+ | Target path | ./input/target.csv | +-------------------+----------------------+ | Test ratio | 0.900 | +-------------------+----------------------+

    Metis graph clustering started.

    Segmentation fault (core dumped)

    opened by yiyang-wang 1
  • TypeError: object of type 'int' has no len()

    TypeError: object of type 'int' has no len()

    hello, when I run main.py, I found the error message: File "D:\anaconda3.4\lib\site-packages\pymetis_init_.py", line 44, in _prepare_graph for i in range(len(adjacency)): TypeError: object of type 'int' has no len()

    I have installed pymetis package to solve the metis.dll, this error occurs in the pymetis_init_.py. do you know how to solve it?

    opened by tanjia123456 1
  • RuntimeError: Could not locate METIS dll.

    RuntimeError: Could not locate METIS dll.

    hello,when I run main.py, the error massage appears:

    raise RuntimeError('Could not locate METIS dll. Please set the METIS_DLL environment variable to its full path.') RuntimeError: Could not locate METIS dll. Please set the METIS_DLL environment variable to its full path.

    do you know how to solve it?

    opened by tanjia123456 1
  • Runtime error about metis

    Runtime error about metis

    At the train begining that part the full graph, the function "metis.part_graph(self.graph, self.args.cluster_number)" throws an error: Traceback (most recent call last): File "C:/Users/xieRu/Desktop/ML/ClusterGCN/src/main.py", line 30, in <module> main() File "C:/Users/xieRu/Desktop/ML/ClusterGCN/src/main.py", line 19, in main clustering_machine.decompose() File "C:\Users\xieRu\Desktop\ML\ClusterGCN\src\clustering.py", line 38, in decompose self.metis_clustering() File "C:\Users\xieRu\Desktop\ML\ClusterGCN\src\clustering.py", line 56, in metis_clustering (st, parts) = metis.part_graph(self.graph, self.args.cluster_number) File "D:\Program\Anaconda\lib\site-packages\metis.py", line 800, in part_graph _METIS_PartGraphKway(*args) File "D:\Program\Anaconda\lib\site-packages\metis.py", line 677, in _METIS_PartGraphKway adjwgt, nparts, tpwgts, ubvec, options, objval, part) OSError: exception: access violation writing 0x000001B0B9C0E000

    But I tried test package metis as follow, It works: ` import metis from networkx import karate_club_graph

    zkc = karate_club_graph() graph_clustering=metis.part_graph(zkc) ` So, what happend?

    opened by ByskyXie 1
  • some question about code

    some question about code

    It seems like your code didn't consider the connection between clusters,and normalization that are mentioned in paper ,will you add these two options?

    opened by thunderbird0902 1
  • About installation

    About installation

    Hi there: Thank you for your great work, I've finally got the code running. To make the installation in README.md more precise & complete. You may want to add the following dependancies:

    • torch_spline_conv == 1.0.4
    • torch_sparse == 0.2.2
    • torch_scatter == 1.0.4
    • torch_cluster == 1.1.5 (strict)
    opened by dkdk-ddk 1
  • Cannot run main.py

    Cannot run main.py

    src/main.py --epochs 100 +-------------------+----------------------+ | Parameter | Value | +===================+======================+ | Cluster number | 10 | +-------------------+----------------------+ | Clustering method | metis | +-------------------+----------------------+ | Dropout | 0.500 | +-------------------+----------------------+ | Edge path | ./input/edges.csv | +-------------------+----------------------+ | Epochs | 100 | +-------------------+----------------------+ | Features path | ./input/features.csv | +-------------------+----------------------+ | Layers | [16, 16, 16] | +-------------------+----------------------+ | Learning rate | 0.010 | +-------------------+----------------------+ | Seed | 42 | +-------------------+----------------------+ | Target path | ./input/target.csv | +-------------------+----------------------+ | Test ratio | 0.900 | +-------------------+----------------------+

    Metis graph clustering started.

    Traceback (most recent call last): File "src/main.py", line 24, in main() File "src/main.py", line 18, in main clustering_machine.decompose() File "/Users/linmiao/gits/ClusterGCN/src/clustering.py", line 38, in decompose self.metis_clustering() File "/Users/linmiao/gits/ClusterGCN/src/clustering.py", line 56, in metis_clustering (st, parts) = metis.part_graph(self.graph, self.args.cluster_number) File "/usr/local/lib/python3.7/site-packages/metis.py", line 765, in part_graph graph = networkx_to_metis(graph) File "/usr/local/lib/python3.7/site-packages/metis.py", line 574, in networkx_to_metis for i in H.node: AttributeError: 'Graph' object has no attribute 'node'

    opened by linkerlin 1
  • issues about the metis algorithm

    issues about the metis algorithm

    (st, parts) = metis.part_graph(self.graph, self.args.cluster_number) Thanks for your awesome code, could you please tell me how metis conduct the graph partition? Cause the self.graph here doesn't include the information about edge weights and feature attributes.

    opened by immortal13 2
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
mmdetection version of TinyBenchmark.

introduction This project is an mmdetection version of TinyBenchmark. TODO list: add TinyPerson dataset and evaluation add crop and merge for image du

34 Aug 27, 2022
Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs

Perceiver IO Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs Usage import torch from src.perceiver.

Timur Ganiev 111 Nov 15, 2022
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

5 Nov 21, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 92 Jan 04, 2023
A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)

Real-time Instance Segmentation and Lane Detection This is a lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look

Jin 4 Dec 30, 2022
This is the face keypoint train code of project face-detection-project

face-key-point-pytorch 1. Data structure The structure of landmarks_jpg is like below: |--landmarks_jpg |----AFW |------AFW_134212_1_0.jpg |------AFW_

I‘m X 3 Nov 27, 2022
A little software to generate and save Julia or Mandelbrot's Fractals.

Julia-Mandelbrot-s-Fractals A little software to generate and save Julia or Mandelbrot's Fractals. Dependencies : Python 3.7 or more. (Also possible t

Olivier 0 Jul 09, 2022
Controlling the MicriSpotAI robot from scratch

Abstract: The SpotMicroAI project is designed to be a low cost, easily built quadruped robot. The design is roughly based off of Boston Dynamics quadr

Florian Wilk 405 Jan 05, 2023
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Graph Wavelet Neural Network ⠀⠀ A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019). Abstract We present graph wavelet neural network

Benedek Rozemberczki 490 Dec 16, 2022
Neural Network to colorize grayscale images

#colornet Neural Network to colorize grayscale images Results Grayscale Prediction Ground Truth Eiji K used colornet for anime colorization Sources Au

Pavel Hanchar 3.6k Dec 24, 2022
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
source code the paper Fast and Robust Iterative Closet Point.

Fast-Robust-ICP This repository includes the source code the paper Fast and Robust Iterative Closet Point. Authors: Juyong Zhang, Yuxin Yao, Bailin De

yaoyuxin 320 Dec 28, 2022
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

CodingMan 45 Dec 12, 2022
Paper: Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification

Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification T M Feroz Ali, Subhasis Chaudhuri, ICVGIP-20-21

T M Feroz Ali 3 Jun 17, 2022
Power Core Simulator!

Power Core Simulator Power Core Simulator is a simulator based off the Roblox game "Pinewood Builders Computer Core". In this simulator, you can choos

BananaJeans 1 Nov 13, 2021