pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

Overview

PyTorch SRResNet

Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs/1609.04802) in PyTorch

Usage

Training

usage: main_srresnet.py [-h] [--batchSize BATCHSIZE] [--nEpochs NEPOCHS]
                        [--lr LR] [--step STEP] [--cuda] [--resume RESUME]
                        [--start-epoch START_EPOCH] [--threads THREADS]
                        [--pretrained PRETRAINED] [--vgg_loss] [--gpus GPUS]

optional arguments:
  -h, --help            show this help message and exit
  --batchSize BATCHSIZE
                        training batch size
  --nEpochs NEPOCHS     number of epochs to train for
  --lr LR               Learning Rate. Default=1e-4
  --step STEP           Sets the learning rate to the initial LR decayed by
                        momentum every n epochs, Default: n=500
  --cuda                Use cuda?
  --resume RESUME       Path to checkpoint (default: none)
  --start-epoch START_EPOCH
                        Manual epoch number (useful on restarts)
  --threads THREADS     Number of threads for data loader to use, Default: 1
  --pretrained PRETRAINED
                        path to pretrained model (default: none)
  --vgg_loss            Use content loss?
  --gpus GPUS           gpu ids (default: 0)

An example of training usage is shown as follows:

python main_srresnet.py --cuda --vgg_loss --gpus 0

demo

usage: demo.py [-h] [--cuda] [--model MODEL] [--image IMAGE]
               [--dataset DATASET] [--scale SCALE] [--gpus GPUS]

optional arguments:
  -h, --help         show this help message and exit
  --cuda             use cuda?
  --model MODEL      model path
  --image IMAGE      image name
  --dataset DATASET  dataset name
  --scale SCALE      scale factor, Default: 4
  --gpus GPUS        gpu ids (default: 0)

We convert Set5 test set images to mat format using Matlab, for simple image reading An example of usage is shown as follows:

python demo.py --model model/model_srresnet.pth --dataset Set5 --image butterfly_GT --scale 4 --cuda

Eval

usage: eval.py [-h] [--cuda] [--model MODEL] [--dataset DATASET]
               [--scale SCALE] [--gpus GPUS]

optional arguments:
  -h, --help         show this help message and exit
  --cuda             use cuda?
  --model MODEL      model path
  --dataset DATASET  dataset name, Default: Set5
  --scale SCALE      scale factor, Default: 4
  --gpus GPUS        gpu ids (default: 0)

We convert Set5 test set images to mat format using Matlab. Since PSNR is evaluated on only Y channel, we import matlab in python, and use rgb2ycbcr function for converting rgb image to ycbcr image. You will have to setup the matlab python interface so as to import matlab library. An example of usage is shown as follows:

python eval.py --model model/model_srresnet.pth --dataset Set5 --cuda

Prepare Training dataset

  • Please refer Code for Data Generation for creating training files.
  • Data augmentations including flipping, rotation, downsizing are adopted.

Performance

  • We provide a pretrained model trained on 291 images with data augmentation
  • Instance Normalization is applied instead of Batch Normalization for better performance
  • So far performance in PSNR is not as good as paper, any suggestion is welcome
Dataset SRResNet Paper SRResNet PyTorch
Set5 32.05 31.80
Set14 28.49 28.25
BSD100 27.58 27.51

Result

From left to right are ground truth, bicubic and SRResNet

Owner
Jiu XU
Computer Vision Engineering Manager @ Apple
Jiu XU
Retrieve and analysis data from SDSS (Sloan Digital Sky Survey)

Author: Behrouz Safari License: MIT sdss A python package for retrieving and analysing data from SDSS (Sloan Digital Sky Survey) Installation Install

Behrouz 3 Oct 28, 2022
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

Hsiang Gao 2 Oct 31, 2022
Multi-Task Deep Neural Networks for Natural Language Understanding

New Release We released Adversarial training for both LM pre-training/finetuning and f-divergence. Large-scale Adversarial training for LMs: ALUM code

Xiaodong 2.1k Dec 30, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Codes for “A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection”

DSAMNet The pytorch implementation for "A Deeply-supervised Attention Metric-based Network and an Open Aerial Image Dataset for Remote Sensing Change

Mengxi Liu 41 Dec 14, 2022
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
Automatic deep learning for image classification.

AutoDL AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few line

wenqi 2 Oct 12, 2022
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
PAIRED in PyTorch 🔥

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Xintao 593 Jan 03, 2023
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 09, 2023
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
A PyTorch library and evaluation platform for end-to-end compression research

CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c

InterDigital 680 Jan 06, 2023
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022