pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

Overview

PyTorch SRResNet

Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs/1609.04802) in PyTorch

Usage

Training

usage: main_srresnet.py [-h] [--batchSize BATCHSIZE] [--nEpochs NEPOCHS]
                        [--lr LR] [--step STEP] [--cuda] [--resume RESUME]
                        [--start-epoch START_EPOCH] [--threads THREADS]
                        [--pretrained PRETRAINED] [--vgg_loss] [--gpus GPUS]

optional arguments:
  -h, --help            show this help message and exit
  --batchSize BATCHSIZE
                        training batch size
  --nEpochs NEPOCHS     number of epochs to train for
  --lr LR               Learning Rate. Default=1e-4
  --step STEP           Sets the learning rate to the initial LR decayed by
                        momentum every n epochs, Default: n=500
  --cuda                Use cuda?
  --resume RESUME       Path to checkpoint (default: none)
  --start-epoch START_EPOCH
                        Manual epoch number (useful on restarts)
  --threads THREADS     Number of threads for data loader to use, Default: 1
  --pretrained PRETRAINED
                        path to pretrained model (default: none)
  --vgg_loss            Use content loss?
  --gpus GPUS           gpu ids (default: 0)

An example of training usage is shown as follows:

python main_srresnet.py --cuda --vgg_loss --gpus 0

demo

usage: demo.py [-h] [--cuda] [--model MODEL] [--image IMAGE]
               [--dataset DATASET] [--scale SCALE] [--gpus GPUS]

optional arguments:
  -h, --help         show this help message and exit
  --cuda             use cuda?
  --model MODEL      model path
  --image IMAGE      image name
  --dataset DATASET  dataset name
  --scale SCALE      scale factor, Default: 4
  --gpus GPUS        gpu ids (default: 0)

We convert Set5 test set images to mat format using Matlab, for simple image reading An example of usage is shown as follows:

python demo.py --model model/model_srresnet.pth --dataset Set5 --image butterfly_GT --scale 4 --cuda

Eval

usage: eval.py [-h] [--cuda] [--model MODEL] [--dataset DATASET]
               [--scale SCALE] [--gpus GPUS]

optional arguments:
  -h, --help         show this help message and exit
  --cuda             use cuda?
  --model MODEL      model path
  --dataset DATASET  dataset name, Default: Set5
  --scale SCALE      scale factor, Default: 4
  --gpus GPUS        gpu ids (default: 0)

We convert Set5 test set images to mat format using Matlab. Since PSNR is evaluated on only Y channel, we import matlab in python, and use rgb2ycbcr function for converting rgb image to ycbcr image. You will have to setup the matlab python interface so as to import matlab library. An example of usage is shown as follows:

python eval.py --model model/model_srresnet.pth --dataset Set5 --cuda

Prepare Training dataset

  • Please refer Code for Data Generation for creating training files.
  • Data augmentations including flipping, rotation, downsizing are adopted.

Performance

  • We provide a pretrained model trained on 291 images with data augmentation
  • Instance Normalization is applied instead of Batch Normalization for better performance
  • So far performance in PSNR is not as good as paper, any suggestion is welcome
Dataset SRResNet Paper SRResNet PyTorch
Set5 32.05 31.80
Set14 28.49 28.25
BSD100 27.58 27.51

Result

From left to right are ground truth, bicubic and SRResNet

Owner
Jiu XU
Computer Vision Engineering Manager @ Apple
Jiu XU
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe.

DeepLab Introduction DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe. It combines densely-compute

Ali 234 Nov 14, 2022
Super Resolution for images using deep learning.

Neural Enhance Example #1 — Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens. As seen on TV! What if you could increase

Alex J. Champandard 11.7k Dec 29, 2022
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
An auto discord account and token generator. Automatically verifies the phone number. Works without proxy. Bypasses captcha.

JOIN DISCORD SERVER https://discord.gg/uAc3agBY FREE HCAPTCHA SOLVING API Discord-Token-Gen An auto discord token generator. Auto verifies phone numbe

3kp 271 Jan 01, 2023
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,

Phil Wang 173 Dec 14, 2022
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 163 Dec 26, 2022
Neural Network to colorize grayscale images

#colornet Neural Network to colorize grayscale images Results Grayscale Prediction Ground Truth Eiji K used colornet for anime colorization Sources Au

Pavel Hanchar 3.6k Dec 24, 2022
Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Cognitive Systems Research Group 139 Nov 30, 2022
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
Checking fibonacci - Generating the Fibonacci sequence is a classic recursive problem

Fibonaaci Series Generating the Fibonacci sequence is a classic recursive proble

Moureen Caroline O 1 Feb 15, 2022
Tutorial materials for Part of NSU Intro to Deep Learning with PyTorch.

Intro to Deep Learning Materials are part of North South University (NSU) Intro to Deep Learning with PyTorch workshop series. (Slides) Related materi

Hasib Zunair 9 Jun 08, 2022
Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ)

Real2CAD-3DV Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ) Group Member: Yue Pan, Yuanwen Yue, Bingxin Ke, Yujie He

24 Jun 22, 2022
Deep Learning Models for Causal Inference

Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.

Bernard J Koch 151 Dec 31, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Training CIFAR-10 with TensorFlow2(TF2) TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset. Architectures LeNe

Chia-Hung Yuan 16 Sep 27, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022