[WACV21] Code for our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors"

Related tags

Deep LearningDRAGON
Overview

DRAGON: From Generalized zero-shot learning to long-tail with class descriptors

Paper
Project Website
Video

Overview

DRAGON learns to correct the bias towards head classes on a sample-by-sample basis; and fuse information from class-descriptions to improve the tail-class accuracy, as described in our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors".

Requirements

  • numpy 1.15.4
  • pandas 0.25.3
  • scipy 1.1.0
  • tensorflow 1.14.0
  • keras 2.2.5

Quick installation under Anaconda:

conda env create -f requirements.yml

Data Preparation

Datasets: CUB, SUN and AWA.
Download data.tar from here, untar it and place it under the project root directory.

DRAGON
| data
   |--CUB
   |--SUN
   |--AWA1
| attribute_expert
| dataset_handler
| fusion
...

Train Experts and Fusion Module

Reproduce results for DRAGON and its modules (Table 1 in our paper):
Training and evaluation should be according to the training protocol described in our paper (Section 5 - training):

  1. First, train each expert without the hold-out set (partial training set) by executing the following commands:

    • CUB:
      # Visual-Expert training
      PYTHONPATH="./" python visual_expert/main.py --base_train_dir=./checkpoints/CUB --dataset_name=CUB --transfer_task=DRAGON --train_dist=dragon --data_dir=data --batch_size=64 --max_epochs=100 --initial_learning_rate=0.0003 --l2=0.005
      # Attribute-Expert training 
      PYTHONPATH="./" python attribute_expert/main.py --base_train_dir=./checkpoints/CUB --dataset_name=CUB --transfer_task=DRAGON --data_dir=data --train_dist=dragon --batch_size=64 --max_epochs=100 --initial_learning_rate=0.001 --LG_beta=1e-7 --LG_lambda=0.0001 --SG_gain=3 --SG_psi=0.01 --SG_num_K=-1
      
    • SUN:
      # Visual-Expert training
      PYTHONPATH="./" python visual_expert/main.py --base_train_dir=./checkpoints/SUN --dataset_name=SUN --transfer_task=DRAGON --train_dist=dragon --data_dir=data --batch_size=64 --max_epochs=100 --initial_learning_rate=0.0001 --l2=0.01
      # Attribute-Expert training 
      PYTHONPATH="./" python attribute_expert/main.py --base_train_dir=./checkpoints/SUN --dataset_name=SUN --transfer_task=DRAGON --data_dir=data --train_dist=dragon --batch_size=64 --max_epochs=100 --initial_learning_rate=0.001 --LG_beta=1e-6 --LG_lambda=0.001 --SG_gain=10 --SG_psi=0.01 --SG_num_K=-1
      
    • AWA:
      # Visual-Expert training
      PYTHONPATH="./" python visual_expert/main.py --base_train_dir=./checkpoints/AWA1 --dataset_name=AWA1 --transfer_task=DRAGON --train_dist=dragon --data_dir=data --batch_size=64 --max_epochs=100 --initial_learning_rate=0.0003 --l2=0.1
      # Attribute-Expert training 
      PYTHONPATH="./" python attribute_expert/main.py --base_train_dir=./checkpoints/AWA1 --dataset_name=AWA1 --transfer_task=DRAGON --data_dir=data --train_dist=dragon --batch_size=64 --max_epochs=100 --initial_learning_rate=0.001 --LG_beta=0.001 --LG_lambda=0.001 --SG_gain=1 --SG_psi=0.01 --SG_num_K=-1
      
  2. Then, re-train each expert, with the hold-out set (full train set) by executing above commands with the --test_mode flag as a parameter.

  3. Rename Visual-lr=0.0003_l2=0.005 to Visual and LAGO-lr=0.001_beta=1e-07_lambda=0.0001_gain=3.0_psi=0.01 to LAGO (this is essential since the FusionModule finds trained experts by their names, without extensions).

  4. Train the fusion-module on partially trained experts (models from step 1) by running the following commands:

    • CUB:
      PYTHONPATH="./" python fusion/main.py --base_train_dir=./checkpoints/CUB --dataset_name=CUB --data_dir=data --initial_learning_rate=0.005 --batch_size=64 --max_epochs=50 --sort_preds=1 --freeze_experts=1 --nparams=2
      
    • SUN:
      PYTHONPATH="./" python fusion/main.py --base_train_dir=./checkpoints/SUN --dataset_name=SUN --data_dir=data --initial_learning_rate=0.0005 --batch_size=64 --max_epochs=50 --sort_preds=1 --freeze_experts=1 --nparams=4
      
    • AWA:
      PYTHONPATH="./" python fusion/main.py --base_train_dir=./checkpoints/AWA1 --dataset_name=AWA1 --data_dir=data --initial_learning_rate=0.005 --batch_size=64 --max_epochs=50 --sort_preds=1 --freeze_experts=1 --nparams=4
      
  5. Finally, evaluate the fusion-module with fully-trained experts (models from step 2), by executing step 4 commands with the --test_mode flag as a parameter.

Pre-trained Models and Checkpoints

Download checkpoints.tar from here, untar it and place it under the project root directory.

checkpoints
  |--CUB
      |--Visual
      |--LAGO
      |--Dual2ParametricRescale-lr=0.005_freeze=1_sort=1_topk=-1_f=2_s=(2, 2)
  |--SUN
      |--Visual
      |--LAGO
      |--Dual4ParametricRescale-lr=0.0005_freeze=1_sort=1_topk=-1_f=2_s=(2, 2)
  |--AWA1
      |--Visual
      |--LAGO
      |--Dual4ParametricRescale-lr=0.005_freeze=1_sort=1_topk=-1_f=2_s=(2, 2)

Cite Our Paper

If you find our paper and repo useful, please cite:

@InProceedings{samuel2020longtail,
  author    = {Samuel, Dvir and Atzmon, Yuval and Chechik, Gal},
  title     = {From Generalized Zero-Shot Learning to Long-Tail With Class Descriptors},
  booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
  year      = {2021}}
Owner
Dvir Samuel
Dvir Samuel
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use.

Terry Zhuo 58 Oct 11, 2022
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
The repository includes the code for training cell counting applications. (Keras + Tensorflow)

cell_counting_v2 The repository includes the code for training cell counting applications. (Keras + Tensorflow) Dataset can be downloaded here : http:

Weidi 113 Oct 06, 2022
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
A TensorFlow implementation of SOFA, the Simulator for OFfline LeArning and evaluation.

SOFA This repository is the implementation of SOFA, the Simulator for OFfline leArning and evaluation. Keeping Dataset Biases out of the Simulation: A

22 Nov 23, 2022
Official implementation of "Implicit Neural Representations with Periodic Activation Functions"

Implicit Neural Representations with Periodic Activation Functions Project Page | Paper | Data Vincent Sitzmann*, Julien N. P. Martel*, Alexander W. B

Vincent Sitzmann 1.4k Jan 06, 2023
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

DeepMind 29 Dec 29, 2022
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

KGI (Knowledge Graph Induction) for slot filling This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code fo

International Business Machines 72 Jan 06, 2023
TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

52 Dec 23, 2022
A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

Aladdin Persson 4.7k Jan 08, 2023
Out-of-boundary View Synthesis towards Full-frame Video Stabilization

Out-of-boundary View Synthesis towards Full-frame Video Stabilization Introduction | Update | Results Demo | Introduction This repository contains the

25 Oct 10, 2022
PyTorch implementation of "Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning"

Transparency-by-Design networks (TbD-nets) This repository contains code for replicating the experiments and visualizations from the paper Transparenc

David Mascharka 351 Nov 18, 2022
This is an official implementation for "ResT: An Efficient Transformer for Visual Recognition".

ResT By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the official implement

zhql 222 Dec 13, 2022
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
Largest list of models for Core ML (for iOS 11+)

Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v

Kedan Li 5.6k Jan 08, 2023