Reference implementation for Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Overview

Diffusion Probabilistic Models

This repository provides a reference implementation of the method described in the paper:

Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, Surya Ganguli
International Conference on Machine Learning, 2015
http://arxiv.org/abs/1503.03585

This implementation builds a generative model of data by training a Gaussian diffusion process to transform a noise distribution into a data distribution in a fixed number of time steps. The mean and covariance of the diffusion process are parameterized using deep supervised learning. The resulting model is tractable to train, easy to exactly sample from, allows the probability of datapoints to be cheaply evaluated, and allows straightforward computation of conditional and posterior distributions.

Using the Software

In order to train a diffusion probabilistic model on the default dataset of MNIST, install dependencies (see below), and then run python train.py.

Dependencies

  1. Install Blocks and its dependencies following these instructions
  2. Setup Fuel and download MNIST following these instructions.

As of October 16, 2015 this code requires the bleeding edge, rather than stable, versions of both Blocks and Fuel. (thanks to David Hofmann for pointing out that the stable release will not work due to an interface change)

Output

The objective function being minimized is the bound on the negative log likelihood in bits per pixel, minus the negative log likelihood under an identity-covariance Gaussian model. That is, it is the negative of the number in the rightmost column in Table 1 in the paper.

Logging information is printed to the console once per training epoch, including the current value of the objective on the training set.

Figures showing samples from the model, parameters, gradients, and training progress are also output periodically (every 25 epochs by default -- see train.py).

The samples from the model are of three types -- standard samples, samples inpainting the left half of masked images, and samples denoising images with Gaussian noise added (by default, the signal-to-noise ratio is 1). This demonstrates the straightforward way in which inpainting, denoising, and sampling from a posterior in general can be performed using this framework.

Here are samples generated by this code after 825 training epochs on MNIST, trained using the command run train.py:

Here are samples generated by this code after 1700 training epochs on CIFAR-10, trained using the command run train.py --batch-size 200 --dataset CIFAR10 --model-args "n_hidden_dense_lower=1000,n_hidden_dense_lower_output=5,n_hidden_conv=100,n_layers_conv=6,n_layers_dense_lower=6,n_layers_dense_upper=4,n_hidden_dense_upper=100":

Miscellaneous

Different nonlinearities - In the paper, we used softplus units in the convolutional layers, and tanh units in the dense layers. In this implementation, I use leaky ReLU units everywhere.

Original source code - This repository is a refactoring of the code used to run the experiments in the published paper. In the spirit of reproducibility, if you email me a request I am willing to share the original source code. It is poorly commented and held together with duct tape though. For most applications, you will be better off using the reference implementation provided here.

Contact - I would love to hear from you. Let me know what goes right/wrong! [email protected]

Owner
Jascha Sohl-Dickstein
Jascha Sohl-Dickstein
Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Christopher T. Chubb 35 Dec 21, 2022
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022
Demo for Real-time RGBD-based Extended Body Pose Estimation paper

Real-time RGBD-based Extended Body Pose Estimation This repository is a real-time demo for our paper that was published at WACV 2021 conference The ou

Renat Bashirov 118 Dec 26, 2022
Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS of first stage is 3.42 and second stage is 3.47.

SDDNet Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS

Cyril Lv 43 Nov 21, 2022
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 03, 2023
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Daniel Roich 58 Dec 24, 2022
A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

FYH 4 Feb 22, 2022
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows

FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.

Meta Incubator 272 Jan 02, 2023
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Motion Compensated Pulse Rate Estimation Overview This project has 2 main parts. Develop a Pulse Rate Algorithm on the given training data. Then Test

Omar Laham 2 Oct 25, 2022
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

Kyon Huang 223 Dec 16, 2022
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear

Simon Blanke 422 Jan 04, 2023
Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Bayesian Methods Research Group 56 Nov 15, 2022
source code for 'Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge' by A. Shah, K. Shanmugam, K. Ahuja

Source code for "Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge" Reference: Abhin Shah, Karthikeyan Shanmugam, Kartik Ahu

Abhin Shah 1 Jun 03, 2022
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks

Introduction This repository contains the modified caffe library and network architectures for our paper "Automated Melanoma Recognition in Dermoscopy

Lequan Yu 47 Nov 24, 2022