Automatically align face images 🙃→🙂. Can also do windowing and warping.

Overview

Automatic Face Alignment (AFA)

Carl M. Gaspar & Oliver G.B. Garrod

You have lots of photos of faces like this:

But you want to line up all of the faces like this:

Perhaps you would also like to window the faces to show only inner facial features like this:

All of the above can be done using AFA like this:

import alignfaces as afa

faces_path = "/Users/Me/faces_for_my_study/"
afa.get_landmarks(faces_path)
aligned_path = afa.align_procrustes(faces_path)
afa.get_landmarks(aligned_path)
the_aperture, aperture_path = afa.place_aperture(aligned_path)

To better understand how to write a script for your specific purposes, we direct you to demo 1. Demo 1 also describes how AFA alignment works.

All of these functions depend on reliable detection of facial landmarks, which is provided by the DLIB library. Alignment is based on generalized Procrustes analysis (GPA), which extensively unit tested.

Additional functions (warping)

Automatic landmark detection means that it is also easy to separate shape and texture in order to produce various kinds of warped images.

AFA provides functions for two types of face-warping manipulations common in face perception research.

Morphing between faces

To learn how to do this please see demo 2.

Enhanced average of facial identity

To learn how to do this please see demo 3.

Setup

It is highly recommended that you have conda installed, preferably miniconda rather than full fat anaconda.

If you do have conda, then do the following to install:

=3.9" scikit-image conda activate myenv pip install "alignfaces @ git+https://[email protected]/SourCherries/auto-face-align.git" ">
conda create --name myenv conda-forge::dlib "python>=3.9" scikit-image

conda activate myenv

pip install "alignfaces @ git+https://[email protected]/SourCherries/auto-face-align.git"

This will create a new virtual environment called myenv. You can use another name for that. You'll need to activate this environment using conda activate myenv whenever you want to use AFA. To deactivate, simply type conda deactivate myenv.

Windows users may encounter a problem with plotting. That is a general issue with Matplotlib on Windows. To fix, simply type the following while your myenv is activated:

conda install freetype=2.10.4

How well does this work?

In addition to unit-testing critical computations, I evaluated both landmark estimation (DLIB) and the outcome of the entire alignment procedure using various face databases. The results are described here.

Citation

If you use this package for your research, please cite the following preprint:

Gaspar, C. M., & Garrod, O. G. B. (2021, November 8). A Python toolbox for Automatic Face Alignment (AFA). Retrieved from psyarxiv.com/erc8a

DOI:

10.31234/osf.io/erc8a

License

This module is under an Apache-2.0 license.

Owner
Carl Michael Gaspar
Scientist focussed on human visual perception and neuroscience.
Carl Michael Gaspar
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

139 Jan 01, 2023
Resources complimenting the Machine Learning Course led in the Faculty of mathematics and informatics part of Sofia University.

Machine Learning and Data Mining, Summer 2021-2022 How to learn data science and machine learning? Programming. Learn Python. Basic Statistics. Take a

Simeon Hristov 8 Oct 04, 2022
Code accompanying "Learning What To Do by Simulating the Past", ICLR 2021.

Learning What To Do by Simulating the Past This repository contains code that implements the Deep Reward Learning by Simulating the Past (Deep RSLP) a

Center for Human-Compatible AI 24 Aug 07, 2021
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022
Training DiffWave using variational method from Variational Diffusion Models.

Variational DiffWave Training DiffWave using variational method from Variational Diffusion Models. Quick Start python train_distributed.py discrete_10

Chin-Yun Yu 26 Dec 13, 2022
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

ycj_project 1 Jan 18, 2022
MPRNet-Cloud-removal: Progressive cloud removal

MPRNet-Cloud-removal Progressive cloud removal Requirements 1.Pytorch = 1.0 2.Python 3 3.NVIDIA GPU + CUDA 9.0 4.Tensorboard Installation 1.Clone the

Semi 95 Dec 18, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022
Train emoji embeddings based on emoji descriptions.

emoji2vec This is my attempt to train, visualize and evaluate emoji embeddings as presented by Ben Eisner, Tim Rocktäschel, Isabelle Augenstein, Matko

Miruna Pislar 17 Sep 03, 2022
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Antoine Caillon 589 Jan 02, 2023
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

Hooman Sedghamiz 18 Oct 21, 2022
A scikit-learn-compatible module for estimating prediction intervals.

MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourit

588 Jan 04, 2023