A Python 3 package for state-of-the-art statistical dimension reduction methods

Related tags

Deep Learningdirepack
Overview

direpack: a Python 3 library for state-of-the-art statistical dimension reduction techniques

This package delivers a scikit-learn compatible Python 3 package for sundry state-of-the art multivariate statistical methods, with a focus on dimension reduction.

The categories of methods delivered in this package, are:

  • Projection pursuit dimension reduction (ppdire)
  • Sufficient dimension reduction (sudire)
  • Robust M-estimators for dimension reduction (sprm) each of which are presented as scikit-learn compatible objects in the corresponding folders.

We hope that this package leads to scientific success. If it does so, we kindly ask to cite the direpack vignette [0], as well as the original publication of the corresponding method.

The package also contains a set of tools for pre- and postprocessing:

  • The preprocessing folder provides classical and robust centring and scaling, as well as spatial sign transforms [4]
  • The dicomo folder contains a versatile class to access a wide variety of moment and co-moment statistics, and statistics derived from those. Check out the dicomo Documentation file and the dicomo Examples Notebook.
  • Plotting utilities in the plot folder
  • Cross-validation utilities in the cross-validation folder

AIG sprm score space

Methods in the sprm folder

  • The estimator (sprm.py) [1]
  • The Sparse NIPALS (SNIPLS) estimator [3](snipls.py)
  • Robust M regression estimator (rm.py)
  • Ancillary functions for M-estimation (_m_support_functions.py)

Methods in the ppdire folder

The ppdire class will give access to a wide range of projection pursuit dimension reduction techniques. These include slower approximate estimates for well-established methods such as PCA, PLS and continuum regression. However, the class provides unique access to a set of robust options, such as robust continuum regression (RCR) [5], through its native grid optimization algorithm, first published for RCR as well [6]. Moreover, ppdire is also a great gateway to calculate generalized betas, using the CAPI projection index [7].

The code is orghanized in

  • ppdire.py - the main PP dimension reduction class
  • capi.py - the co-moment analysis projection index.

Methods in the sudire folder

The sudire folder gives access to an extensive set of methods that resort under the umbrella of sufficient dimension reduction. These range from meanwhile long-standing, well-accepted approaches, such as sliced inverse regression (SIR) and the closely related SAVE [8,9], through methods such as directional regression [10] and principal Hessian directions [11], and more. However, the package also contains some of the most recently developed, state-of-the-art sufficient dimension reduction techniques, that require no distributional assumptions. The options provided in this category are based on energy statistics (distance covariance [12] or martingale difference divergence [13]) and ball statistics (ball covariance) [14]. All of these options can be called by setting the corresponding parameters in the sudire class, cf. the docs. Note: the ball covariance option will require some lines to be uncommented as indicated. We decided not to make that option generally available, since it depends on the Ball package that seems to be difficult to install on certain architectures.

How to install

The package is distributed through PyPI, so install through:

    pip install direpack

Note that some of the key methods in the sudire subpackage rely on the IPOPT optimization package, which according to their recommendation, can best be installed directly as:

    conda install -c conda-forge cyipopt

Documentation

  • Detailed documentation can be found in the ReadTheDocs page.
  • A more extensive description on the background is presented in the direpack vignette.
  • Examples on how to use each of the dicomo, ppdire, sprm and sudire classes are presented as Jupyter notebooks in the examples folder
  • Furthemore, the docs folder contains a few markdown files on usage of the classes.

References

  1. direpack: A Python 3 package for state-of-the-art statistical dimension reduction methods
  2. Sparse partial robust M regression, Irene Hoffmann, Sven Serneels, Peter Filzmoser, Christophe Croux, Chemometrics and Intelligent Laboratory Systems, 149 (2015), 50-59.
  3. Partial robust M regression, Sven Serneels, Christophe Croux, Peter Filzmoser, Pierre J. Van Espen, Chemometrics and Intelligent Laboratory Systems, 79 (2005), 55-64.
  4. Sparse and robust PLS for binary classification, I. Hoffmann, P. Filzmoser, S. Serneels, K. Varmuza, Journal of Chemometrics, 30 (2016), 153-162.
  5. Spatial Sign Preprocessing:  A Simple Way To Impart Moderate Robustness to Multivariate Estimators, Sven Serneels, Evert De Nolf, Pierre J. Van Espen, Journal of Chemical Information and Modeling, 46 (2006), 1402-1409.
  6. Robust Continuum Regression, Sven Serneels, Peter Filzmoser, Christophe Croux, Pierre J. Van Espen, Chemometrics and Intelligent Laboratory Systems, 76 (2005), 197-204.
  7. Robust Multivariate Methods: The Projection Pursuit Approach, Peter Filzmoser, Sven Serneels, Christophe Croux and Pierre J. Van Espen, in: From Data and Information Analysis to Knowledge Engineering, Spiliopoulou, M., Kruse, R., Borgelt, C., Nuernberger, A. and Gaul, W., eds., Springer Verlag, Berlin, Germany, 2006, pages 270--277.
  8. Projection pursuit based generalized betas accounting for higher order co-moment effects in financial market analysis, Sven Serneels, in: JSM Proceedings, Business and Economic Statistics Section. Alexandria, VA: American Statistical Association, 2019, 3009-3035.
  9. Sliced Inverse Regression for Dimension Reduction Li K-C, Journal of the American Statistical Association (1991), 86, 316-327.
  10. Sliced Inverse Regression for Dimension Reduction: Comment, R.D. Cook, and Sanford Weisberg, Journal of the American Statistical Association (1991), 86, 328-332.
  11. On directional regression for dimension reduction , B. Li and S.Wang, Journal of the American Statistical Association (2007), 102:997–1008.
  12. On principal hessian directions for data visualization and dimension reduction:Another application of stein’s lemma, K.-C. Li. , Journal of the American Statistical Association(1992)., 87,1025–1039.
  13. Sufficient Dimension Reduction via Distance Covariance, Wenhui Sheng and Xiangrong Yin in: Journal of Computational and Graphical Statistics (2016), 25, issue 1, pages 91-104.
  14. A martingale-difference-divergence-based estimation of central mean subspace, Yu Zhang, Jicai Liu, Yuesong Wu and Xiangzhong Fang, in: Statistics and Its Interface (2019), 12, number 3, pages 489-501.
  15. Robust Sufficient Dimension Reduction Via Ball Covariance Jia Zhang and Xin Chen, Computational Statistics and Data Analysis 140 (2019) 144–154

Release Notes can be checked out in the repository.

A list of possible topics for further development is provided as well. Additions and comments are welcome!

You might also like...
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper · Huggingface Models · Report Bug Overview This is the official code

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and build their own methods.

Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

State-of-the-art data augmentation search algorithms in PyTorch
State-of-the-art data augmentation search algorithms in PyTorch

MuarAugment Description MuarAugment is a package providing the easiest way to a state-of-the-art data augmentation pipeline. How to use You can instal

This is the unofficial code of  Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes. which achieve state-of-the-art trade-off between accuracy and speed on cityscapes and camvid, without using inference acceleration and extra data
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

A state of the art of new lightweight YOLO model implemented by TensorFlow 2.
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Comments
  • `p` should never be smaller than `n_components` in `sprm.fit`

    `p` should never be smaller than `n_components` in `sprm.fit`

    The variable p should never be smaller than n_components in sprm.fit otherwise an error occurs. This is checked for at the top of fit but p can be redefined at line 185.

    Inserting as line 186:

                self.n_components = min(p, self.n_components)
    

    ...appears to fix the issue, but I have not done extensive testing. It may also be advisable to raise a warning if n_components is reduced in this way.

    opened by MattWenham 5
  • gsspp.GenSpatialSignPrePprocessor().transform() is not working

    gsspp.GenSpatialSignPrePprocessor().transform() is not working

    Dear sirs,

    I like to make spatial sign transform for my data when I come across your module and found it won't work. My codes is as the following:

    scaler = gsspp.GenSpatialSignPrePprocessor(center = 'kstepLTS', fun = 'ball').fit(X_train) X_scaled = scaler.transform(X_train)

    It won't work for scaler don't have the transform method due to no object type is defined which makes it no attribute or method bestowed upon. The error message is as the following:

    AttributeError: 'NoneType' object has no attribute 'transform'

    maurice

    opened by shinhongwu 2
  • coef_ attribute expected but missing when using ppdire

    coef_ attribute expected but missing when using ppdire

    Below is a reproducible code for the error. The cells with # NB code are code blocks while the other are jupyter outputs.

    # NB code
    import numpy as np
    from direpack import dicomo, ppdire
    
    X = np.random.rand(5,5)
    
    reducer = ppdire(
        projection_index = dicomo,
        # mode of projection_index class defines dim reduction 'method'
        pi_arguments = {'mode' : 'var'},
        n_components=4,
        optimizer='SLSQP'
    )
    reducer.fit(X)
    reducer.x_loadings_
    
    array([[-0.36157257,  0.59084429,  0.31816485, -0.13799567],
           [-0.59046145, -0.14633256,  0.28087908, -0.57627361],
           [ 0.52330409,  0.27622013, -0.27929959, -0.75601132],
           [ 0.09839508,  0.72132604,  0.11781207,  0.27450752],
           [-0.48692072,  0.18133122, -0.85322337,  0.04425411]])
    
    # NB code
    reducer.transform(X)
    
    
    ---------------------------------------------------------------------------
    AttributeError                            Traceback (most recent call last)
    /tmp/ipykernel_63144/911793123.py in <module>
    ----> 1 reducer.transform(X)
    
    ~/.conda/envs/prod3/lib/python3.9/site-packages/direpack/ppdire/ppdire.py in transform(self, Xn)
        759         Xn = convert_X_input(Xn)
        760         (n,p) = Xn.shape
    --> 761         if p!= self.coef_.shape[0]:
        762             raise(ValueError('New data must have seame number of columns as the ones the model has been trained with'))
        763         Xnc = scale_data(Xn,self.x_loc_,self.x_sca_)
    
    AttributeError: 'ppdire' object has no attribute 'coef_'
    

    I looked into the code and the issue seems to come from this attribute only being created in there is no flag one-block.

    but a data check on the transform and predict functions uses that attribute.

    opened by nikml 1
  • A possible mistake in the estimation basis of SDR

    A possible mistake in the estimation basis of SDR

    Thanks for the package you provide, and I found a confusing problem. in src/direpack/sudire/sudire.py Line 489. When using scale, x_loadings should be set to N2 multiply P, not P, because we do scale. I notice you intended to do so in Line225 in src/direpack/sudire/_sudire_utils.py (take SIR for example), but x passed to this function has already been scaled, so variable "signsqrt" in this function is always identity matrix, which can not function as we want.

    opened by I-zhouqh 1
Releases(1.0.25)
Owner
Sven Serneels
I Presently manage a team on stats, machine learning and AI. On the side, avid method developer for high dimensional stats and machine learning.
Sven Serneels
Optimized code based on M2 for faster image captioning training

Transformer Captioning This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimi

lyricpoem 16 Dec 16, 2022
MMRazor: a model compression toolkit for model slimming and AutoML

Documentation: https://mmrazor.readthedocs.io/ English | 简体中文 Introduction MMRazor is a model compression toolkit for model slimming and AutoML, which

OpenMMLab 899 Jan 02, 2023
Automatic Attendance marker for LMS Practice School Division, BITS Pilani

LMS Attendance Marker Automatic script for lazy people to mark attendance on LMS for Practice School 1. Setup Add your LMS credentials and time slot t

Nihar Bansal 3 Jun 12, 2021
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.

Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa

3 Dec 08, 2022
EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Gender Bangs Body Side Pose (Yaw) Lighting Smile Face Shape Lipstick Color Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate Flush & Eye Color Mout

Zhenliang He 321 Dec 01, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
Laplace Redux -- Effortless Bayesian Deep Learning

Laplace Redux - Effortless Bayesian Deep Learning This repository contains the code to run the experiments for the paper Laplace Redux - Effortless Ba

Runa Eschenhagen 28 Dec 07, 2022
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

This is a Pytorch implementation of Janai, J., Güney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with

Anurag Ranjan 110 Nov 02, 2022
Taming Transformers for High-Resolution Image Synthesis

Taming Transformers for High-Resolution Image Synthesis CVPR 2021 (Oral) Taming Transformers for High-Resolution Image Synthesis Patrick Esser*, Robin

CompVis Heidelberg 3.5k Jan 03, 2023
Framework web SnakeServer.

SnakeServer - Framework Web 🐍 Documentação oficial do framework SnakeServer. Conteúdo Sobre Como contribuir Enviar relatórios de segurança Pull reque

Jaedson Silva 0 Jul 21, 2022
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
This is the repository for the paper "Have I done enough planning or should I plan more?"

Metacognitive Learning Tool box https://re.is.mpg.de What Is This? This repository contains two modules used to analyse metacognitive learning in huma

0 Dec 01, 2021
A knowledge base construction engine for richly formatted data

Fonduer is a Python package and framework for building knowledge base construction (KBC) applications from richly formatted data. Note that Fonduer is

HazyResearch 386 Dec 05, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022