Text-to-Image generation

Overview

Generate vivid Images for Any (Chinese) text

teaser

CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain.

@article{ding2021cogview,
  title={CogView: Mastering Text-to-Image Generation via Transformers},
  author={Ding, Ming and Yang, Zhuoyi and Hong, Wenyi and Zheng, Wendi and Zhou, Chang and Yin, Da and Lin, Junyang and Zou, Xu and Shao, Zhou and Yang, Hongxia and Tang, Jie},
  journal={arXiv preprint arXiv:2105.13290},
  year={2021}

Getting Started

Setup

  • Hardware: Linux servers with Nvidia V100s or A100s are recommended, but it is also okay to run the pretrained models with smaller --max-inference-batch-size or training smaller models on less powerful GPUs.

  • Environment (Option 1): Please first install PyTorch (>=1.7.0) and apex, and then install other dependencies via pip install -r requirements.txt.

  • Environment (Option 2): We prepare a docker image in case that you fail to handle the environments. Pull the image, create a (background) container and get into it via:

    docker pull cogview/cuda111_torch181_deepspeed040
    ./env/start_docker.sh && docker exec -it bg-cogview bash
    
    cd /root/cogview # in the container
    

Download

  1. Download the image tokenizer vqvae_hard_biggerset_011.pt from BAAI website or Tsinghua Cloud. Place the file under pretrained/vqvae.
wget https://cloud.tsinghua.edu.cn/f/71607a5dca69417baa8c/?dl=1 -O pretrained/vqvae/vqvae_hard_biggerset_011.pt
  1. Download models from Project Wudao-Wenhui.

    FileName Discription
    cogview-base.tar The pretrained text-to-image model.
    cogview-caption.tar Finetuned image-to-text model, also used for reranking.
    cogview-sr.tar Finetuned super-resolution model. (warning: it runs slow.)

    Uncompress them into pretrained/cogview/. The following command should be modified based on the model name.

    tar -xvf cogview-{base, sr, caption}.tar -C pretrained/cogview/
    
  2. (Only for training tutorial, skip it for inference.) Download the Alibaba item-title image tokens dataset from our link at Tianchi(TODO). Place the lmdb folder under ./data.

Run CogView! (Model Inference)

We encapsulate the generation functions into scripts. See generate_samples.py and arguments.py for details.

Text-to-Image Generation

Write text queries (one per line) into input.txt and run:

./scripts/text2image.sh --debug

The results will in a new folder samples_text2image/.

Arguments useful in inference are mainly:

  • --input-source [path or "interactive"]. The path of the input file, can also be "interactive", which will launch a CLI.
  • --output-path [path]. The folder containing the results.
  • --batch-size [int]. The number of samples will be generated per query.
  • --max-inference-batch-size [int]. Maximum batch size per forward. Reduce it if OOM.
  • --debug. Only save concatenated images for all generated samples, and name them by input text and date.
  • --with-id. When it toggled, you must specify an "id" before each input, e.g. 001\t一个漂亮的女孩, \t denoting TAB (NOT space). It will generate batch-size split images in a folder named "id" for each input. Confict with --debug.
  • --device [int]. Running on which GPU.

Super-resolution

Run the following script and input text\t{image_path}, where {image_path} means the path of a previously generated image.

./scripts/super_resolution.sh

Note: It is only effective for generated images from our Image Tokenizer (due to the token distribution).

Image-to-Text

The input is "one image path per line", and will print the results to stdout.

./scripts/image2text.sh

Note: Not optimized for this task, so it might not very competitive (but okay). We will consider to release a version funetuning for a longer period on this task in the future. (TODO)

Post-selection

This application only takes file inputs, where each line is {text}\t{image_path1}\t{image_path2}\t{image_path3}.... The output is {output_path}/scores.txt, a line of a list of scores, following a line from inputs.

./scripts/post_selection.sh

Note: In the released codes, for simplicity, we did not expose the raw API , which supports some advanced generation modes, e.g. text and part of image.

Training

Here we use a subset of our dataset from Alibaba item-title for tutorial.

Single Node

After downloading the dataset, directly run

./scripts/pretrain_single_node.sh

Multiple Nodes

If you want to train the models on multiple servers inter-connected by infiniband without a shared file system (you may need pdsh to accelerate this process):

  1. On each server, use git clone to download this repo, and make sure the data (LMDB format) are moved into the data subfolder.
  2. On each server, echo "ip1 ip2 <other IPs>" > ./docker/ip_list.txt, and then start the docker by ./env/start_docker.sh.
  3. Get into the docker on the first node container via docker exec -it bg-cogview bash.
  4. Get into /root/cogview and run ./scripts/pretrain_multiple_nodes.sh. You may need to change the config (especially OPTIONS_NCCL) in the shell script.

See the arguments.py for advanced functions for training. TODO

Gallery

more_samples

Owner
THUDM
Data Mining Research Group at Tsinghua University
THUDM
Corner-based Region Proposal Network

Corner-based Region Proposal Network CRPN is a two-stage detection framework for multi-oriented scene text. It employs corners to estimate the possibl

xhzdeng 140 Nov 04, 2022
This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe libraries.

CVZone This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe librar

CVZone 648 Dec 30, 2022
Total Text Dataset. It consists of 1555 images with more than 3 different text orientations: Horizontal, Multi-Oriented, and Curved, one of a kind.

Total-Text-Dataset (Official site) Updated on April 29, 2020 (Detection leaderboard is updated - highlighted E2E methods. Thank you shine-lcy.) Update

Chee Seng Chan 671 Dec 27, 2022
Recognizing cropped text in natural images.

ASTER: Attentional Scene Text Recognizer with Flexible Rectification ASTER is an accurate scene text recognizer with flexible rectification mechanism.

Baoguang Shi 681 Jan 02, 2023
Code for the "Sensing leg movement enhances wearable monitoring of energy expenditure" paper.

EnergyExpenditure Code for the "Sensing leg movement enhances wearable monitoring of energy expenditure" paper. Additional data for replicating this s

Patrick S 42 Oct 26, 2022
Tesseract Open Source OCR Engine (main repository)

Tesseract OCR About This package contains an OCR engine - libtesseract and a command line program - tesseract. Tesseract 4 adds a new neural net (LSTM

48.4k Jan 09, 2023
make a better chinese character recognition OCR than tesseract

deep ocr See README_en.md for English installation documentation. 只在ubuntu下面测试通过,需要virtualenv安装,安装路径可自行调整: git clone https://github.com/JinpengLI/deep

Jinpeng 1.5k Dec 28, 2022
Msos searcher - A half-hearted attempt at finding a magic square of squares

MSOS searcher A half-hearted attempt at finding (or rather searching) a MSOS (Magic Square of Squares) in the spirit of the Parker Square. Running I r

Niels Mündler 1 Jan 02, 2022
PianoVisuals - Create background videos synced with piano music using opencv

Steps Record piano video Use Neural Network to do body segmentation (video matti

Solbiati Alessandro 4 Jan 24, 2022
MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI.

MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI. It is an open-source and easy-to-install ecosystem that can run locally on a machine with one

Project MONAI 344 Dec 23, 2022
color detection using python

colordetection color detection using python In this color detection Python project, we are going to build an application through which you can automat

Ruchith Kumar 1 Nov 04, 2021
This Repository contain Opencv Projects in python

Python-Opencv OpenCV OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library. OpenCV was

Yash Sakre 2 Nov 06, 2021
Toolbox for OCR post-correction

Ochre Ochre is a toolbox for OCR post-correction. Please note that this software is experimental and very much a work in progress! Overview of OCR pos

National Library of the Netherlands / Research 117 Nov 10, 2022
Shape Detection - It's a shape detection project with OpenCV and Python.

Shape Detection It's a shape detection project with OpenCV and Python. Setup pip install opencv-python for doing AI things. pip install simpleaudio fo

1 Nov 26, 2022
A post-processing tool for scanned sheets of paper.

unpaper Originally written by Jens Gulden — see AUTHORS for more information. Licensed under GNU GPL v2 — see COPYING for more information. Overview u

27 Dec 07, 2022
A curated list of papers, code and resources pertaining to image composition

A curated list of resources including papers, datasets, and relevant links pertaining to image composition.

BCMI 391 Dec 30, 2022
An advanced 2D image manipulation with features such as edge detection and image segmentation built using OpenCV

OpenCV-ToothPaint3-Advanced-Digital-Image-Editor This application named ‘Tooth Paint’ version TP_2020.3 (64-bit) or version 3 was developed within a w

JunHong 1 Nov 05, 2021
The open source extract transaction infomation by using OCR.

Transaction OCR Mã nguồn trích xuất thông tin transaction từ file scaned pdf, ở đây tôi lựa chọn tài liệu sao kê công khai của Thuy Tien. Mã nguồn có

Nguyen Xuan Hung 18 Jun 02, 2022
Introduction to image processing, most used and popular functions of OpenCV

👀 OpenCV 101 Introduction to image processing, most used and popular functions of OpenCV go here.

Vusal Ismayilov 3 Jul 02, 2022
Using computer vision method to recognize and calcutate the features of the architecture.

building-feature-recognition In this repository, we accomplished building feature recognition using traditional/dl-assisted computer vision method. Th

4 Aug 11, 2022