Final Project for the Intel AI Readiness Boot Camp NLP (Jan)

Overview

NLP Boot Camp (Jan) Synopsis

Full Name:

Prameya Mohanty

Name of your School:

Delhi Public School, Rourkela

Class:

VIII

Title of the Project:

iTransect – A Language Detector cum Translator

Project Domain:

Natural Language Processing

Summary:

This application is an AI and NLP enabled language detector cum translator. It can first detect the language used in the text entered by the user. Then it can also convert the text in your desired language. This app has a capability to recognize and translate text to over 15 languages.

Context:

We frequently face problems while reading google articles or while going through websites which are not in English language or our mother tongue. Many rural people also don't understand any language except their Mother Tongue. So, they can also translate the text and go through it.

My idea for this problem is that we can create a translator to translate the text into a language which we can understand. But another problem which occurs is that we need to first recognize that the original text is written in which language and mostly we fail to do so. For this reason, my application would just take the text as input, recognize the language of the text and then it would also translate the text into our desired language.

I transformed my idea into a solution by performing some Natural Language Processing on the text given by the user to first recognize the language used in the text and then translate into the desired language of the user.

How does it work:

I have used the MultinomialNB Model of the Scikit-Learn Library. The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification). The multinomial distribution normally requires integer feature counts. However, in practice, fractional counts such as tf-idf may also work.

My application contains a Huge Dataset which contains over 15 languages and some texts on those languages. This dataset in trained on the MultinomialNB Model of the Scikit-Learn Library. This helps it to predict the language of the desired text which we provide to it. Then I have used the GoogleTrans API to Translate our Text into the desired language of the user.

My application takes some text as input from the user. Then it detects the language used in the text by a MultinomialNB Model of the Scikit-Learn Library. After that it uses the GoogleTrans API to translate the text into the desired language of the user.

The future scope of my model is that we can increase the dataset by adding more languages so that the predictions would be more accurate. This would also help our application to cover a broader audience.

Instructions for Usage:

  1. Prerequisite: To use this application, you should have Python installed in your system. Installation of Git is recommended but not compulsory.

  2. Clone Repo: If you have git installed in your system then you can use the command given here or else you can just click on the Code button and then click on the Download ZIP Button. git clone https://github.com/The-Coding-Hub/iTransect.git

  3. Install Requirements: Now you need to install the requirements of this application using pip and the requirements.txt file. Command to be executed in the console is given below. pip install -r ./requirements.txt

  4. Start App: Now you are all set the use this application. You just need to execute the command given below to start the development server of Python Flask in your Localhost.

  5. Enjoy App: Just open the link given in your console and then you can enjoy our application!

Video Link:

https://youtu.be/QsJQ1lxI2Lw

Code Folder Link:

https://github.com/The-Coding-Hub/iTransect

Owner
TheCodingHub
Student at Delhi Public School, Rourkela, Odisha. Programming is my favorite sport. YouTube Channel: TheCodingHub
TheCodingHub
Natural language Understanding Toolkit

Natural language Understanding Toolkit TOC Requirements Installation Documentation CLSCL NER References Requirements To install nut you need: Python 2

Peter Prettenhofer 119 Oct 08, 2022
In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Making Emojis More Predictable by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad

Karanjot Singh 2 Jan 17, 2022
KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark.

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

Graph4AI 230 Nov 22, 2022
A Transformer Implementation that is easy to understand and customizable.

Simple Transformer I've written a series of articles on the transformer architecture and language models on Medium. This repository contains an implem

Naoki Shibuya 4 Jan 20, 2022
Quantifiers and Negations in RE Documents

Quantifiers-and-Negations-in-RE-Documents This project was part of my work for a

Nicolas Ruscher 1 Feb 01, 2022
Adversarial Examples for Extreme Multilabel Text Classification

Adversarial Examples for Extreme Multilabel Text Classification The code is adapted from the source codes of BERT-ATTACK [1], APLC_XLNet [2], and Atte

1 May 14, 2022
Python api wrapper for JellyFish Lights

Python api wrapper for JellyFish Lights The hope is to make this a pip installable package Current capabalilities: Connects to a local JellyFish Light

10 Dec 18, 2022
Reproduction process of BERT on SST2 dataset

BERT-SST2-Prod Reproduction process of BERT on SST2 dataset 安装说明 下载代码库 git clone https://github.com/JunnYu/BERT-SST2-Prod 进入文件夹,安装requirements pip ins

yujun 1 Nov 18, 2021
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
Extracting Summary Knowledge Graphs from Long Documents

GraphSum This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other basel

Zeqiu (Ellen) Wu 10 Oct 21, 2022
The guide to tackle with the Text Summarization

The guide to tackle with the Text Summarization

Takahiro Kubo 1.2k Dec 30, 2022
Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 models for speech recognition

Wav2Vec2 STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 mode

David Zurow 22 Dec 29, 2022
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

Maksim Terpilowski 49 Dec 30, 2022
내부 작업용 django + vue(vuetify) boilerplate. 짠 하면 돌아감.

Pocket Galaxy 아주 간단한 개인용, 혹은 내부용 툴을 만들어야하는데 이왕이면 웹이 편하죠? 그럴때를 위해 만들어둔 django와 vue(vuetify)로 이뤄진 boilerplate 입니다. 각 폴더에 있는 설명서대로 실행을 시키면 일단 당장 뭔가가 돌아갑니

Jamie J. Seol 16 Dec 03, 2021
Revisiting Pre-trained Models for Chinese Natural Language Processing (Findings of EMNLP 2020)

This repository contains the resources in our paper "Revisiting Pre-trained Models for Chinese Natural Language Processing", which will be published i

Yiming Cui 463 Dec 30, 2022
Write Python in Urdu - اردو میں کوڈ لکھیں

UrduPython Write simple Python in Urdu. How to Use Write Urdu code in سامپل۔پے The mappings are as following: "۔": ".", "،":

Saad A. Bazaz 26 Nov 27, 2022
CoSENT、STS、SentenceBERT

CoSENT_Pytorch 比Sentence-BERT更有效的句向量方案

102 Dec 07, 2022
This is the library for the Unbounded Interleaved-State Recurrent Neural Network (UIS-RNN) algorithm, corresponding to the paper Fully Supervised Speaker Diarization.

UIS-RNN Overview This is the library for the Unbounded Interleaved-State Recurrent Neural Network (UIS-RNN) algorithm. UIS-RNN solves the problem of s

Google 1.4k Dec 28, 2022
Simple NLP based project without any use of AI

Simple NLP based project without any use of AI

Shripad Rao 1 Apr 26, 2022