============================================================================================================ `MILA will stop developing Theano <https://groups.google.com/d/msg/theano-users/7Poq8BZutbY/rNCIfvAEAwAJ>`_. The PyMC developers are continuing Theano development in a `fork <https://github.com/pymc-devs/theano-pymc>`_. ============================================================================================================ To install the package, see this page: http://deeplearning.net/software/theano/install.html For the documentation, see the project website: http://deeplearning.net/software/theano/ Related Projects: https://github.com/Theano/Theano/wiki/Related-projects It is recommended that you look at the documentation on the website, as it will be more current than the documentation included with the package. In order to build the documentation yourself, you will need sphinx. Issue the following command: :: python ./doc/scripts/docgen.py Documentation is built into ``html/`` The PDF of the documentation can be found at ``html/theano.pdf`` ================ DIRECTORY LAYOUT ================ ``Theano`` (current directory) is the distribution directory. * ``Theano/theano`` contains the package * ``Theano/theano`` has several submodules: * ``gof`` + ``compile`` are the core * ``scalar`` depends upon core * ``tensor`` depends upon ``scalar`` * ``sparse`` depends upon ``tensor`` * ``sandbox`` can depend on everything else * ``Theano/examples`` are copies of the example found on the wiki * ``Theano/benchmark`` and ``Theano/examples`` are in the distribution, but not in the Python package * ``Theano/bin`` contains executable scripts that are copied to the bin folder when the Python package is installed * Tests are distributed and are part of the package, i.e. fall in the appropriate submodules * ``Theano/doc`` contains files and scripts used to generate the documentation * ``Theano/html`` is where the documentation will be generated
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.
Overview
Data-Driven Operational Space Control for Adaptive and Robust Robot Manipulation
OSCAR Project Page | Paper This repository contains the codebase used in OSCAR: Data-Driven Operational Space Control for Adaptive and Robust Robot Ma
This package implements THOR: Transformer with Stochastic Experts.
THOR: Transformer with Stochastic Experts This PyTorch package implements Taming Sparsely Activated Transformer with Stochastic Experts. Installation
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.
Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation
A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”
Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior. The code will release soon. Implementation Python3 PyTorch=1.0 NVIDIA GPU+
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮
CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis
FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca
IMBENS: class-imbalanced ensemble learning in Python.
IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.
CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea
Minecraft Hack Detection With Python
Minecraft Hack Detection An attempt to try and use crowd sourced replays to find
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.
Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza
Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs
Perceiver IO Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs Usage import torch from src.perceiver.
🔮 Execution time predictions for deep neural network training iterations across different GPUs.
Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.
pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve
SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP
scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules
DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)
GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do
Invertible conditional GANs for image editing
Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb