Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Overview

Machine learning enabling high-throughput and remote operations at large-scale user facilities.

Overview

This repository contains the source code and examples for recreating the publication at arXiv:2201.03550.

Abstract

Imaging, scattering, and spectroscopy are fundamental in understanding and discovering new functional materials. Contemporary innovations in automation and experimental techniques have led to these measurements being performed much faster and with higher resolution, thus producing vast amounts of data for analysis. These innovations are particularly pronounced at user facilities and synchrotron light sources. Machine learning (ML) methods are regularly developed to process and interpret large datasets in real-time with measurements. However, there remain conceptual barriers to entry for the facility general user community, whom often lack expertise in ML, and technical barriers for deploying ML models. Herein, we demonstrate a variety of archetypal ML models for on-the-fly analysis at multiple beamlines at the National Synchrotron Light Source II (NSLS-II). We describe these examples instructively, with a focus on integrating the models into existing experimental workflows, such that the reader can easily include their own ML techniques into experiments at NSLS-II or facilities with a common infrastructure. The framework presented here shows how with little effort, diverse ML models operate in conjunction with feedback loops via integration into the existing Bluesky Suite for experimental orchestration and data management.

Explanation of Examples

As with all things at a user facility, each model is trained or set-up according to the needs of the user and their science. What is consistent across all AI agents, is their final communication paradigm. The agent loads and stores the model and/or necessary data, and has at minimum the following methods.

  • tell : tell the agent about some new data
  • report : construct a report (message, visualization, etc.) about the data
  • ask : ask the agent what to do next (for more see bluesky-adaptive)

Unsupervised learning (Non-negative matrix factorization)

The NMF companion agent keeps a constant cache of data to perform the reduction on. We treat these data as dependent variables, with independent variables coming fom the experiment. In the case study presented, the independent variables are temperature measurements, and the dependent variables are the 1-d spectra. Each call to report updates the decomposition using the full dataset, and updates the plots in the visualization.

The NMF companion agent is wrapped in a filesystem watcher, DirectoryAgent, which monitors a directory periodically. If there is new data in the target directory, the DirectoryAgent tells the NMF companion about the new data, and triggers a new report.

The construction of these objects, training, and visualization are all contained in the run_unsupervised file and mirrored in the corresponding notebook.

Anomaly detection

The model attributes a new observation to either normal or anomalous time series by comparing it to a large courpus of data collected at the beamline over an extended period of time. The development and updating of the model is done offline. Due to the nature of exparimental measurements, anomalous observatons may constitute a sizable portion of data withing a single collection period. Thus, a labeling of the data is required prior to model training. Once the model is trained it is saved as a binary file and loaded each time when AnomalyAgent is initialized.

A set of features devired from the original raw data, allowing the model to process time series of arbitary length.

The training can be found at run_anomaly.py with example deployment infrastructure at deploy_anomaly.py.

Supervised learning (Failure Classification)

The classifications of failures involves training the models entirely offline. This allows for robust model selection and specific deployment. A suite of models from scikit-learn are trained and tested, with the most promising model chosen to deploy. Since the models are lightweight, we re-train them at each instantiation during deployment with the most current dataset. For deep learning models, it would be appropriate to save and version the weights of a model, can construct the model at instantiation and load the weights.

The training can be found at run_supervised.py with example deployment infrastructure at deploy_supervised.py. How this is implemented at the BMM beamline can be found concisely here, where a wrapper agent does pointwise evaluation on UIDs of a document stream, using the ClassificationAgent's tell--report interface.

System Requirements

Hardware Requirements

Software Requirements

OS Requirements

This package has been tested exclusively on Linux operating systems.

  • RHEL 8.3
  • Ubuntu 18.04
  • PopOS 20.04

Python dependencies

  • numpy
  • matplotlib
  • scikit-learn
  • ipython

Getting Started

Installation guide

Install from github:

$ python3 -m venv pub_env
$ source pub_env/bin/activate
Owner
BNL
Brookhaven National Laboratory
BNL
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID,

Intermediate Domain Module (IDM) This repository is the official implementation for IDM: An Intermediate Domain Module for Domain Adaptive Person Re-I

Yongxing Dai 87 Nov 22, 2022
Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

DEFT: Detection Embeddings for Tracking DEFT: Detection Embeddings for Tracking, Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara

Mohamed Chaabane 253 Dec 18, 2022
PyTorch implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets

Simple PyTorch Implementation of "Grokking" Implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets Usage Running

Teddy Koker 15 Sep 29, 2022
An open-access benchmark and toolbox for electricity price forecasting

epftoolbox The epftoolbox is the first open-access library for driving research in electricity price forecasting. Its main goal is to make available a

97 Dec 05, 2022
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
HyperPose is a library for building high-performance custom pose estimation applications.

HyperPose is a library for building high-performance custom pose estimation applications.

TensorLayer Community 1.2k Jan 04, 2023
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf

Behavior-Sequence-Transformer-Pytorch This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf This model

Jaime Ferrando Huertas 83 Jan 05, 2023
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim

16 Dec 08, 2022
Intel® Neural Compressor is an open-source Python library running on Intel CPUs and GPUs

Intel® Neural Compressor targeting to provide unified APIs for network compression technologies, such as low precision quantization, sparsity, pruning, knowledge distillation, across different deep l

Intel Corporation 846 Jan 04, 2023
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.

Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil

AaltoML 165 Nov 27, 2022
A vision library for performing sliced inference on large images/small objects

SAHI: Slicing Aided Hyper Inference A vision library for performing sliced inference on large images/small objects Overview Object detection and insta

Open Business Software Solutions 2.3k Jan 04, 2023
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Hou zhijian 23 Dec 26, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Jan 01, 2023
A collection of scripts I developed for personal and working projects.

A collection of scripts I developed for personal and working projects Table of contents Introduction Repository diagram structure List of scripts pyth

Gianluca Bianco 109 Dec 26, 2022
Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Distant Supervision for Scene Graph Generation Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation. Introduction The pape

THUNLP 23 Dec 31, 2022
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021