Starter Code for VALUE benchmark

Overview

StarterCode for VALUE Benchmark

This is the starter code for VALUE Benchmark [website], [paper].

Overview of VALUE Benchmark

This repository currently supports all baseline models in VALUE paper, including training with different video-subtitle fusion methods, different input channels, different visual representations and multi-task training. You can also perform transfer evaluation between different tasks with our evaluation code.

Before dive into the baseline models mentioned above, please make yourself familiar with the codebase by going through the examples in Quick Start and Single Task Finetuning.

The code in this repo are copied/modified from open-source implementations made available by HERO.

Updates

  • [7/27/2021] Please re-download violin_test_private.db at this link if you downloaded via script/download_violin.sh prior to 7/27/2021. The previous version is not consistent with our release, sorry for your inconvenience.

Requirements

We use the provided Docker image in HERO for easier reproduction. Please follow Requirements in HERO to set up the environment.

Quick Start

NOTE: Please run bash scripts/download_pretrained.sh $PATH_TO_STORAGE to get the latest pretrained checkpoints from HERO.

We use TVR as an end-to-end example for single-task finetuning.

  1. Download processed data and pretrained models with the following command.

    bash scripts/download_tvr.sh $PATH_TO_STORAGE

    After downloading you should see the following folder structure:

    ├── video_db
    │   ├── tv
    ├── pretrained
    │   └── hero-tv-ht100.pt
    └── txt_db
        ├── tv_subtitles.db
        ├── tvr_train.db
        ├── tvr_val.db
        └── tvr_test.db
    
  2. Launch the Docker container for running the experiments.

    # docker image should be automatically pulled
    source launch_container.sh $PATH_TO_STORAGE/txt_db $PATH_TO_STORAGE/video_db \
        $PATH_TO_STORAGE/finetune $PATH_TO_STORAGE/pretrained

    The launch script respects $CUDA_VISIBLE_DEVICES environment variable. Note that the source code is mounted into the container under /src instead of built into the image so that user modification will be reflected without re-building the image. (Data folders are mounted into the container separately for flexibility on folder structures.)

  3. Run finetuning for the TVR task.

    # inside the container
    horovodrun -np 8 python train_retrieval.py --config config/train-tvr-8gpu.json \
        --output_dir $YOUR_TVR_OUTPUT_DIR
    
    # for single gpu
    python train_retrieval.py --config $YOUR_CONFIG_JSON
  4. Run inference for the TVR task.

    # inference, inside the container
    python eval_vcmr.py --query_txt_db /txt/tvr_val.db/ --split val \
        --vfeat_db /video/tv/ --sub_txt_db /txt/tv_subtitles.db/ \
        --output_dir $YOUR_TVR_OUTPUT_DIR --checkpoint $BEST_CKPT_STEP \
        --task tvr
    

    The result file will be written at ${YOUR_TVR_OUTPUT_DIR}/results_val/results_${BEST_CKPT_STEP}_all.json. Change to --query_txt_db /txt/tvr_test.db/ --split test for inference on test split. Please format the result file as requested in VALUE Evaluation Tools for submission, this repository does not include formatting.

  5. Misc. In case you would like to reproduce the whole preprocessing pipeline.

  • Text annotation and subtitle preprocessing

    # outside of the container
    # make sure you have downloaded/constructed the video dbs for TV dataset
    # the prepro of tv_subtitles.db requires information from video_db/tv
    bash scripts/create_txtdb.sh $PATH_TO_STORAGE/txt_db \
        $PATH_TO_STORAGE/ann $PATH_TO_STORAGE/video_db
  • Video feature extraction

    We follow feature extraction code at HERO_Video_Feature_Extractor. Please follow the link for instructions to extract video features from ResNet, SlowFast, S3D in Mil-NCE and CLIP-ViT models. These features are saved as separate .npz files per video.

  • Video feature preprocessing and saved to lmdb

    # inside of the container
    
    # Use resnet_slowfast as an example
    # Gather slowfast/resnet feature paths
    python scripts/collect_video_feature_paths.py  \
        --feature_dir $PATH_TO_STORAGE/vis_feat_dir\
        --output $PATH_TO_STORAGE/video_db --dataset $DATASET_NAME \
        --feat_version resnet_slowfast 
    
    # Convert to lmdb
    python scripts/convert_videodb.py \
        --vfeat_info_file $PATH_TO_STORAGE/video_db/$DATASET_NAME/resnet_slowfast_info.pkl \
        --output $PATH_TO_STORAGE/video_db --dataset $DATASET_NAME --frame_length 1.5 \
        --feat_version resnet_slowfast
    • --frame_length: 1 feature per "frame_length" seconds, we use 1.5 in our implementation. set it to be consistent with the one used in feature extraction.
    • --compress: enable compression of lmdb
    • --feat_version: choose from resnet_slowfast, resnet_mil-nce(ResNet+S3D in paper), clip-vit_slowfast, clip-vit_mil-nce(CLIP-ViT+S3D in paper).

VALUE Single Task Finetuning

Video Retrieval Tasks

All video retrieval tasks can be finetuned with train_retrieval.py. We use YC2R as an additional example to show how to perform single-task finetuning on video retrieval tasks.

  1. download data
    # outside of the container
    bash scripts/download_yc2.sh $PATH_TO_STORAGE
  2. train
    # inside the container
    horovodrun -np 4 python train_retrieval.py --config config/train-yc2r-4gpu.json \
        --output_dir $YC2R_EXP
  3. inference
    # inside the container
    python eval_vr.py --query_txt_db /txt/yc2r_test.db/ --split test \
        --vfeat_db /video/yc2/ --sub_txt_db /txt/yc2_subtitles.db/ \
        --output_dir $YC2R_EXP --checkpoint $ckpt --task yc2r
    The result file will be written at $YC2R_EXP/results_test/results_$ckpt_all.json, which can be submitted to the evaluation server. Please format the result file as requested in VALUE Evaluation Tools for submission.

Video QA Tasks

All video question answering models can be finetuned with train_qa.py. We use TVQA to demonstrate how to perform single-task finetuning on video question answering tasks.

  1. download data

    # outside of the container
    bash scripts/download_tvqa.sh $PATH_TO_STORAGE
  2. train

    # inside the container
    horovodrun -np 8 python train_qa.py --config config/train-tvqa-8gpu.json \
        --output_dir $TVQA_EXP
  3. inference

    # inside the container
    horovodrun -np 8 python eval_videoQA.py --query_txt_db /txt/tvqa_test.db/ --split test \
        --vfeat_db /video/tv/ --sub_txt_db /txt/tv_subtitles.db/ \
        --output_dir $TVQA_EXP --checkpoint $ckpt --task tvqa

    The result file will be written at $TVQA_EXP/results_test/results_$ckpt_all.json, which can be submitted to the evaluation server. Please format the result file as requested in VALUE Evaluation Tools for submission.

    Use eval_violin.py for inference on VIOLIN task.

Captioning tasks

All video captioning models can be finetuned with train_captioning.py. We use TVC to demonstrate how to perform single-task finetuning on video captioning tasks.

  1. download data

    # outside of the container
    bash scripts/download_tvc.sh $PATH_TO_STORAGE
  2. train

    # inside the container
    horovodrun -np 8 python train_captioning.py --config config/train-tvc-8gpu.json \
        --output_dir $TVC_EXP
  3. inference

    # inside the container
    python inf_tvc.py --model_dir $TVC_EXP --ckpt_step $ckpt \
        --target_clip /txt/tvc_val_release.jsonl --output tvc_val_output.jsonl
    • The result file will be written at $TVC_EXP/tvc_val_output.jsonl
    • change to --target_clip /txt/tvc_test_release.jsonl for test results.
    • see scripts/prepro_tvc.sh for LMDB preprocessing.

    Use inf_vatex_en_c.py / inf_yc2c.py for inference on VATEX_EN_C / YC2C task.

VALUE Multi-Task Finetuning

  1. download data

    # outside of the container
    bash scripts/download_all.sh $PATH_TO_STORAGE
  2. train

    # inside the container
    horovodrun -np 8 python train_all_multitask.py \
        --config config/train-all-multitask-8gpu.json \
        --output_dir $AT_PT_FT_EXP
    • --config: change config file for different multi-task settings.
      • MT by domain group: config/train-tv_domain-multitask-8gpu.json / config/train-youtube_domain-multitask-8gpu.json
      • MT by task type: config/train-retrieval-multitask-8gpu.json / config/train-qa-multitask-8gpu.json / config/train-caption-multitask-8gpu.json
      • AT: config/train-all-multitask-8gpu.json
    • For multi-task baselines without pre-training, refer to configs under config/FT_only_configs
  3. inference

    Follow the inference instructions above for each task.

Training with Different Input Channels

To reproduce our experiments with different input channels, change the training config via --config. Take TVR as an example:

  1. Video-only
    # inside the container
    horovodrun -np 8 python train_retrieval.py \
        --config config/FT_only_configs/train-tvr_video_only-8gpu.json \
        --output_dir $TVR_V_only_EXP
  2. Subtitle-only
    # inside the container
    
    horovodrun -np 8 python train_retrieval.py \
        --config config/FT_only_configs/train-tvr_sub_only-8gpu.json \
        --output_dir $TVR_S_only_EXP
  3. Video + Subtitle
    # inside the container
    
    horovodrun -np 8 python train_retrieval.py \
        --config config/FT_only_configs/train-tvr-8gpu.json \
        --output_dir $TVR_EXP

Training with Different Video-Subtitle Fusion Methods

To reproduce our experiments with different video-subtitle fusion methods, change the fusion methods via --model_config for training. Take TVR as an example:

# Training, inside the container
horovodrun -np 8 python train_retrieval.py --config config/FT_only_configs/train-tvr-8gpu.json \
    --output_dir $TVR_EXP --model_config config/model_config/hero_finetune.json
  • config/model_config/hero_finetune.json: default temporal align + cross-modal transformer
  • config/model_config/video_sub_sequence_finetune.json: sequence concatenation
  • config/model_config/video_sub_feature_add_finetune.json: temporal align + summation
  • config/model_config/video_sub_feature_concat_finetune.json: temporal align + concatenation

For two-stream experiments in our paper, please train video-only and subtitle-only models following Training with Video-only and Subtitle-only and use evaluation scripts in two_stream_eval. Take TVR as an example,

# Evaluation, inside the container
python eval_vcmr.py --query_txt_db /txt/tvr_val.db/ --split val \
    --vfeat_db /video/tv/ --sub_txt_db /txt/tv_subtitles.db/ \
    --video_only_model_dir $TVR_V_only_EXP --video_only_checkpoint $BEST_V_only_CKPT_STEP \
    --sub_only_model_dir $TVR_S_only_EXP --sub_only_checkpoint $BEST_S_only_CKPT_STEP \
    --task tvr

Training with Different Visual Representations

To reproduce our experiments with different visual representations, change the visual representations via --vfeat_version for training. Take TVR as an example:

# inside the container
horovodrun -np 8 python train_retrieval.py --config config/FT_only_configs/train-tvr-8gpu.json \
    --output_dir $TVR_EXP --vfeat_version resnet

We provide all feature variations used in the paper, including:

  • 2D features: resnet and clip-vit
  • 3D features: mil-nce(S3D in paper) and slowfast
  • 2D+3D features: resnet_slowfast, resnet_mil-nce(ResNet+S3D in paper), clip-vit_mil-nce(CLIP-ViT+S3D in paper), clip-vit_slowfast
  • --vfeat_version: default is set to be resnet_slowfast

Task Transferability Evaluation

To reproduce our experiments about task transferability, you will need to first have a trained model on source task and run evaluation on target task. Take TVR->How2R as an example:

  1. Train on TVR task
    # inside the container
    horovodrun -np 8 python train_retrieval.py --config config/FT_only_configs/train-tvr-8gpu.json \
        --output_dir $TVR_EXP 
  2. Evaluate the trained model on How2R task:
    # inside the container
    python eval_vcmr.py --query_txt_db /txt/how2r_val_1k.db/ --split val \
        --vfeat_db /video/how2/ --sub_txt_db /txt/how2_subtitles.db/ \
        --output_dir $TVR_EXP --checkpoint $BEST_TVR_CKPT_STEP \
        --task how2r

Pre-training

All VALUE baselines are based on the pre-trained checkpoint released in HERO. The pre-training experiments are not tested in this codebase.

If you wish to perform pre-training, please refer to instructions in HERO.

Citation

If you find this code useful for your research, please consider citing:

@inproceedings{li2021value,
  title={VALUE: A Multi-Task Benchmark for Video-and-Language Understanding Evaluation},
  author={Li, Linjie and Lei, Jie and Gan, Zhe and Yu, Licheng and Chen, Yen-Chun and Pillai, Rohit and Cheng, Yu and Zhou, Luowei and Wang, Xin Eric and Wang, William Yang and others},
  booktitle={35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks},
  year={2021}
}

@inproceedings{li2020hero,
  title={HERO: Hierarchical Encoder for Video+ Language Omni-representation Pre-training},
  author={Li, Linjie and Chen, Yen-Chun and Cheng, Yu and Gan, Zhe and Yu, Licheng and Liu, Jingjing},
  booktitle={EMNLP},
  year={2020}
}

License

MIT

Owner
VALUE Benchmark
VALUE Benchmark
A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks A Transformer-based library for SocialNLP classification tasks. Currently

298 Jan 07, 2023
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

158 Jan 08, 2023
Implementation of QuickDraw - an online game developed by Google, combined with AirGesture - a simple gesture recognition application

QuickDraw - AirGesture Introduction Here is my python source code for QuickDraw - an online game developed by google, combined with AirGesture - a sim

Viet Nguyen 89 Dec 18, 2022
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f

10 Mar 16, 2022
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022
Source code for Task-Aware Variational Adversarial Active Learning

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

27 Nov 23, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
Deploy optimized transformer based models on Nvidia Triton server

Deploy optimized transformer based models on Nvidia Triton server

Lefebvre Sarrut Services 1.2k Jan 05, 2023
A developer interface for creating Chat AIs for the Chai app.

ChaiPy A developer interface for creating Chat AIs for the Chai app. Usage Local development A quick start guide is available here, with a minimal exa

Chai 28 Dec 28, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery

i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery This is a public code repository for the publication: i-SpaSP: Structured Neural Pruning

Cameron Ronald Wolfe 5 Nov 04, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta

141 Jan 03, 2023
Code repository for Semantic Terrain Classification for Off-Road Autonomous Driving

BEVNet Datasets Datasets should be put inside data/. For example, data/semantic_kitti_4class_100x100. Training BEVNet-S Example: cd experiments bash t

(Brian) JoonHo Lee 24 Dec 12, 2022
🤖 Project template for your next awesome AI project. 🦾

🤖 AI Awesome Project Template 👋 Template author You may want to adjust badge links in a README.md file. 💎 Installation with pip Installation is as

Wiktor Łazarski 18 Nov 23, 2022
Geometric Deep Learning Extension Library for PyTorch

Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for

Matthias Fey 16.5k Jan 08, 2023