The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

Overview

ISC-Track1-Submission

The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

Required dependencies

To begin with, you should install the following packages with the specified versions in Python, Anaconda. Other versions may work but please do NOT try. For instance, cuda 11.0 has some bugs which bring very bad results. The hardware chosen is Nvidia Tesla V100 and Intel CPU. Other hardware, such as A100, may work but please do NOT try. The stability is not guaranteed, for instance, the Ampere architecture is not suitable and some instability is observed. Please do NOT use AMD CPU, such as EPYC, we observe some instability on DGX server.

  • python 3.7.10
  • pytorch 1.7.1 with cuda 10.1
  • faiss-gpu 1.7.1 with cuda 10.1
  • h5py 3.4.0
  • pandas 1.3.3
  • sklearn 1.0
  • skimage 0.18.3
  • PIL 8.3.2
  • cv2 4.5.3.56
  • numpy 1.16.0
  • torchvision 0.8.2 with cuda 10.1
  • augly 0.1.4
  • selectivesearch 0.4
  • face-recognition 1.3.0 (with dlib of gpu-version)
  • tqdm 4.62.3
  • requests 2.26.0
  • seaborn 0.11.2
  • mkl 2.4.0
  • loguru 0.5.3

Note: Some unimportant packages may be missing, please install them using pip directly when an error occurs.

Pre-trained models

We use three pre-trained models. They are all pre-trained on ImageNet unsupervisedly. To be convenient, we first directly give the pre-trained models as follows, then also the training codes are given.

The first backbone: ResNet-50; The second backbone: ResNet-152; The third backbone: ResNet-50-IBN.

For ResNet-50, we do not pre-train it by ourselves. It is directly downloaded from here. It is supplied by Facebook Research, and the project is Barlow Twins. You should rename it to resnet50_bar.pth.

For ResNet-152 and ResNet-50-IBN, we use the official codes of Momentum2-teacher. We only change the backbone to ResNet-152 and ResNet-50-IBN. It takes about 2 weeks to pre-train the ResNet-152, and 1 week to pre-train the ResNet-50-IBN on 8 V100 GPUs. To be convenient, we supply the whole pre-training codes in the Pretrain folder. The related readme file is also given in that folder.

It should be noted that pre-training processing plays a very important role in our algorithm. Therefore, if you want to reproduce the pre-trained results, please do NOT change the number of GPUs, the batch size, and other related hyper-parameters.

Training

For training, we generate 11 datasets. For each dataset, 3 models with different backbones are trained. Each training takes about/less than 1 day on 4 V100 GPUs (bigger backbone takes longer and smaller backbone takes shorter). The whole training codes, including how to generate training datasets and the link to the generated datasets, are given in the Training folder. For more details, please refer to the readme file in that folder.

Test

To test the performance of the trained model, we perform multi-scale, multi-model, and multi-part testing and ensemble all the scores to get the final score. To be efficient, 33 V100 GPUs are suggested to use. The time for extracting all query images' features using 33 V100 GPUs is about 3 hours. Also extracting and storing training and reference images' features take a lot of time. Please be patient and prepare enough storage to reproduce the testing process. We give all the information to generate our final results in the Test folder. Please reproduce the results according to the readme file in that folder.

Owner
Wenhao Wang
I am a student from Beihang University. My research interests include person re-identification, unsupervised domain adaptation, and domain generalization.
Wenhao Wang
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Storage-optimizer - Identify potintial optimizations on the cloud storage accounts

Storage Optimizer Identify potintial optimizations on the cloud storage accounts

Zaher Mousa 1 Feb 13, 2022
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
[ICLR'21] Counterfactual Generative Networks

This repository contains the code for the ICLR 2021 paper "Counterfactual Generative Networks" by Axel Sauer and Andreas Geiger. If you want to take the CGN for a spin and generate counterfactual ima

88 Jan 02, 2023
Code for project: "Learning to Minimize Remainder in Supervised Learning".

Learning to Minimize Remainder in Supervised Learning Code for project: "Learning to Minimize Remainder in Supervised Learning". Requirements and Envi

Yan Luo 0 Jul 18, 2021
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
Unofficial Implementation of MLP-Mixer in TensorFlow

mlp-mixer-tf Unofficial Implementation of MLP-Mixer [abs, pdf] in TensorFlow. Note: This project may have some bugs in it. I'm still learning how to i

Rishabh Anand 24 Mar 23, 2022
Code for Paper Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning

Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning (c) Tianyu Han and Daniel Truhn, RWTH Aachen University, 20

Tianyu Han 7 Nov 22, 2022
The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible

pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximat

Relation Therapeutics 95 Dec 27, 2022
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
A DeepStack custom model for detecting common objects in dark/night images and videos.

DeepStack_ExDark This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for d

MOSES OLAFENWA 98 Dec 24, 2022
This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing described in paper Discontinuous Grammar as a Foreign Language.

Discontinuous Grammar as a Foreign Language This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing

Daniel Fernández-González 2 Apr 07, 2022
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Luna Yue Huang 41 Oct 29, 2022
RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.

[3DV 2021] We propose a new cascaded architecture for novel view synthesis, called RGBD-Net, which consists of two core components: a hierarchical depth regression network and a depth-aware generator

Phong Nguyen Ha 4 May 26, 2022
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

Sicara 399 Jan 08, 2023
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022