An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

Overview

简介

通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNNMiniXception。利用 imdb_crop数据集训练模型,进行人脸性别分类,准确率均达到96%。

模型 准确率 输入尺寸
SimpleCNN 96.00% (48, 48, 3)
MiniXception 96.01% (64, 64, 1)

Requirements

scipy==1.2.1
paddlepaddle==2.1.2
numpy==1.20.1
opencv-python==3.4.10.37
pyyaml~=5.4.1
visualdl~=2.2.0
tqdm~=4.62.0

数据准备

我们在数据集imdb_crop (密码 mu2h)上训练模型,数据集也可以在这里下载。下载和解压数据后,不用对数据再做别的处理了,编辑配置文件conf.yamlconf2.yaml,两者分别是SimpleCNNMiniXception的配置文件,把 imdb_dir设置成数据集所在的目录。不用划分训练集和测试集,程序会自动划分,即使你不训练只测试。我们采取的数据集划分方式和论文作者的一样,先根据文件名对图片进行排序,前80%为训练集,后20%为测试集。

训练

在配置文件conf.yamlconf2.yaml里进行相关配置,mode设置成train,其它选项根据个人情况配置。

执行脚本

python train_gender_classfifier.py path_to_conf

比如

python train_gender_classfifier.py ./conf.yaml

path_to_conf 是可选的,默认是 ./conf.yaml,即训练SimpleCNN

测试

在配置文件conf.yamlconf2.yaml里进行相关配置,mode设置成val,另外要配置model_state_dictimdb_dir。训练和测试的imdb_dir是一样的,都是数据集解压后所在的目录,不用对数据进行任何修改。训练和测试的imdb_dir虽然一样,但是训练和测试取的是数据集的不同部分,在上文的数据准备中有提到数据集划分的方式。

执行脚本

python train_gender_classfifier.py path_to_conf

等结果就行了。

指标可视化

你可以通过 visuadl 可视化训练过程中指标(比如损失、准确率等)的变化。可以在配置文件里设置日志的输出目录log_dir,在训练的过程中,每个epoch的准确率、损失、学习率的信息会写到日志中,分trainval两个文件夹。

当要查看指标时,执行以下命令

visualdl --logdir your_logdir --host 127.0.0.1

your_logdir是你设置的日志目录。

然后在浏览器中访问

http://127.0.0.1:8040/

下面展示我们的模型的指标曲线图。

SimpleCNN

avatar

avatar

MiniXception

avatar

avatar

Negative Interactions for Improved Collaborative Filtering:

Negative Interactions for Improved Collaborative Filtering: Don’t go Deeper, go Higher This notebook provides an implementation in Python 3 of the alg

Harald Steck 21 Mar 05, 2022
Code for Universal Semi-Supervised Semantic Segmentation models paper accepted in ICCV 2019

USSS_ICCV19 Code for Universal Semi Supervised Semantic Segmentation accepted to ICCV 2019. Full Paper available at https://arxiv.org/abs/1811.10323.

Tarun K 68 Nov 24, 2022
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

Matthew Macy 606 Dec 21, 2022
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
Conditional Generative Adversarial Networks (CGAN) for Mobility Data Fusion

This code implements the paper, Kim et al. (2021). Imputing Qualitative Attributes for Trip Chains Extracted from Smart Card Data Using a Conditional Generative Adversarial Network. Transportation Re

Eui-Jin Kim 2 Feb 03, 2022
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation

SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit

Arijit Dasgupta 9 Jul 28, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

Meta Research 283 Dec 30, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning

BEAS Blockchain Enabled Asynchronous and Secure Federated Machine Learning Default Network Configuration: The default application uses the HyperLedger

Harpreet Virk 11 Nov 20, 2022
NAS-Bench-x11 and the Power of Learning Curves

NAS-Bench-x11 NAS-Bench-x11 and the Power of Learning Curves Shen Yan, Colin White, Yash Savani, Frank Hutter. NeurIPS 2021. Surrogate NAS benchmarks

AutoML-Freiburg-Hannover 13 Nov 18, 2022
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
PyTorch implementation of Higher Order Recurrent Space-Time Transformer

Higher Order Recurrent Space-Time Transformer (HORST) This is the official PyTorch implementation of Higher Order Recurrent Space-Time Transformer. Th

13 Oct 18, 2022
Platform-agnostic AI Framework 🔥

🇬🇧 TensorLayerX is a multi-backend AI framework, which can run on almost all operation systems and AI hardwares, and support hybrid-framework progra

TensorLayer Community 171 Jan 06, 2023
we propose a novel deep network, named feature aggregation and refinement network (FARNet), for the automatic detection of anatomical landmarks.

Feature Aggregation and Refinement Network for 2D Anatomical Landmark Detection Overview Localization of anatomical landmarks is essential for clinica

aoyueyuan 0 Aug 28, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Jan 04, 2023
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022
Adaptive Denoising Training (ADT) for Recommendation.

DenoisingRec Adaptive Denoising Training for Recommendation. This is the pytorch implementation of our paper at WSDM 2021: Denoising Implicit Feedback

Wenjie Wang 51 Dec 30, 2022
This repository contains the implementation of the paper: "Towards Frequency-Based Explanation for Robust CNN"

RobustFreqCNN About This repository contains the implementation of the paper "Towards Frequency-Based Explanation for Robust CNN" arxiv. It primarly d

Sarosij Bose 2 Jan 23, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
A flexible submap-based framework towards spatio-temporally consistent volumetric mapping and scene understanding.

Panoptic Mapping This package contains panoptic_mapping, a general framework for semantic volumetric mapping. We provide, among other, a submap-based

ETHZ ASL 194 Dec 20, 2022