Point-NeRF: Point-based Neural Radiance Fields

Overview

Point-NeRF: Point-based Neural Radiance Fields

Project Sites | Paper | Primary contact: Qiangeng Xu

Point-NeRF uses neural 3D point clouds, with associated neural features, to model a radiance field. Point-NeRF can be rendered efficiently by aggregating neural point features near scene surfaces, in a ray marching-based rendering pipeline. Moreover, Point-NeRF can be initialized via direct inference of a pre-trained deep network to produce a neural point cloud; this point cloud can be finetuned to surpass the visual quality of NeRF with 30X faster training time. Point-NeRF can be combined with other 3D reconstruction methods and handles the errors and outliers in such methods via a novel pruning and growing mechanism.

Reference

Please cite our paper if you are interested
Point-NeRF: Point-based Neural Radiance Fields.    

@article{xu2022point,
  title={Point-NeRF: Point-based Neural Radiance Fields},
  author={Xu, Qiangeng and Xu, Zexiang and Philip, Julien and Bi, Sai and Shu, Zhixin and Sunkavalli, Kalyan and Neumann, Ulrich},
  journal={arXiv preprint arXiv:2201.08845},
  year={2022}
}

Overal Instruction

  1. Please first install the libraries as below and download/prepare the datasets as instructed.
  2. Point Initialization: Download pre-trained MVSNet as below and train the feature extraction from scratch or directly download the pre-trained models. (Obtain 'MVSNet' and 'init' folder in checkpoints folder)
  3. Per-scene Optimization: Download pre-trained models or optimize from scratch as instructed.

We provide all the checkpoint files (google drive) and all the test results images and scores (google drive)

Installation

Requirements

All the codes are tested in the following environment:

  • Linux (tested on Ubuntu 16.04, 18.04, 20.04)
  • Python 3.6+
  • PyTorch 1.7 or higher (tested on PyTorch 1.7, 1.8.1, 1.9, 1.10)
  • CUDA 10.2 or higher

Install

Install the dependent libraries as follows:

  • Install the dependent python libraries:
pip install torch==1.8.1+cu102 h5py
pip install imageio scikit-image

We develope our code with pytorch1.8.1 and pycuda2021.1

Data Preparation

The layout should looks like this:

pointnerf
├── data_src
│   ├── dtu
    │   │   │──Cameras
    │   │   │──Depths
    │   │   │──Depths_raw
    │   │   │──Rectified
    ├── nerf
    │   │   │──nerf_synthetic
    ├── nsvf
    │   │   │──Synthetic_NeRF
    ├── scannet
    │   │   │──scans 
    |   │   │   │──scene0101_04
    |   │   │   │──scene0241_01

DTU:

Download the preprocessed DTU training data and Depth_raw from original MVSNet repo and unzip.

NeRF Synthetic

Download nerf_synthetic.zip from here under ``data_src/nerf/''

Tanks & Temples

Follow Neural Sparse Voxel Fields and download Tanks&Temples | download (.zip) | 0_* (training) 1_* (testing) under: ``data_src/nsvf/''

ScanNet

Download and extract ScanNet by following the instructions provided at http://www.scan-net.org/. The detailed steps including:

  • Go to http://www.scan-net.org and fill & sent the request form.
  • You will get a email that has command instruction and a download-scannet.py file, this file is for python 2, you can use our download-scannet.py in the ``data'' directory for python 3.
  • clone the official repo:
    git clone https://github.com/ScanNet/ScanNet.git
    
  • Download specific scenes (used by NSVF):
     python data/download-scannet.py -o ../data_src/scannet/ id scene0101_04 
     python data/download-scannet.py -o ../data_src/scannet/ id scene0241_01
    
  • Process the sens files:
      python ScanNet/SensReader/python/reader.py --filename data_src/nrData/scannet/scans/scene0101_04/scene0101_04.sens  --output_path data_src/nrData/scannet/scans/scene0101_04/exported/ --export_depth_images --export_color_images --export_poses --export_intrinsics
      
      python ScanNet/SensReader/python/reader.py --filename data_src/nrData/scannet/scans/scene0241_01/scene0241_01.sens  --output_path data_src/nrData/scannet/scans/scene0241_01/exported/ --export_depth_images --export_color_images --export_poses --export_intrinsics
    

Point Initialization / Generalization:

  Download pre-trained MVSNet checkpoints:

We trained MVSNet on DTU. You can Download ''MVSNet'' directory from google drive and place them under '''checkpoints/'''

  Train 2D feature extraction and point representation

  Directly use our trained checkpoints files:

Download ''init'' directory from google drive. and place them under '''checkpoints/'''

  Or train from scratch:

Train for point features of 63 channels (as in paper)

bash dev_scripts/ete/dtu_dgt_d012_img0123_conf_color_dir_agg2.sh

Train for point features of 32 channels (better for per-scene optimization)

bash dev_scripts/ete/dtu_dgt_d012_img0123_conf_agg2_32_dirclr20.sh

After the training, you should pick a checkpoint and rename it to best checkpoint, e.g.:

cp checkpoints/dtu_dgt_d012_img0123_conf_color_dir_agg2/250000_net_ray_marching.pth  checkpoints/dtu_dgt_d012_img0123_conf_color_dir_agg2/best_net_ray_marching.pth

cp checkpoints/dtu_dgt_d012_img0123_conf_color_dir_agg2/250000_net_mvs.pth  checkpoints/dtu_dgt_d012_img0123_conf_color_dir_agg2/best_net_mvs.pth

  Test feed forward inference on dtu scenes

These scenes that are selected by MVSNeRF, please also refer their code to understand the metrics calculation.

bash dev_scripts/dtu_test_inf/inftest_scan1.sh
bash dev_scripts/dtu_test_inf/inftest_scan8.sh
bash dev_scripts/dtu_test_inf/inftest_scan21.sh
bash dev_scripts/dtu_test_inf/inftest_scan103.sh
bash dev_scripts/dtu_test_inf/inftest_scan114.sh

Per-scene Optimization:

(Please visit the project sites to see the original videos of above scenes, which have quality loss when being converted to gif files here.)

Download per-scene optimized Point-NeRFs

You can skip training and download the folders of ''nerfsynth'', ''tanksntemples'' and ''scannet'' here google drive, and place them in ''checkpoints/''.

pointnerf
├── checkpoints
│   ├── init
    ├── MVSNet
    ├── nerfsynth
    ├── scannet
    ├── tanksntemples

In each scene, we provide initialized point features and network weights ''0_net_ray_marching.pth'', points and weights at 20K steps ''20000_net_ray_marching.pth'' and 200K steps ''200000_net_ray_marching.pth''

Test the per-scene optimized Point-NeRFs

NeRF Synthetics

test scripts
    bash dev_scripts/w_n360/chair_test.sh
    bash dev_scripts/w_n360/drums_test.sh
    bash dev_scripts/w_n360/ficus_test.sh
    bash dev_scripts/w_n360/hotdog_test.sh
    bash dev_scripts/w_n360/lego_test.sh
    bash dev_scripts/w_n360/materials_test.sh
    bash dev_scripts/w_n360/mic_test.sh
    bash dev_scripts/w_n360/ship_test.sh

ScanNet

test scripts
    bash dev_scripts/w_scannet_etf/scane101_test.sh
    bash dev_scripts/w_scannet_etf/scane241_test.sh

Tanks & Temples

test scripts
    bash dev_scripts/w_tt_ft/barn_test.sh
    bash dev_scripts/w_tt_ft/caterpillar_test.sh
    bash dev_scripts/w_tt_ft/family_test.sh
    bash dev_scripts/w_tt_ft/ignatius_test.sh
    bash dev_scripts/w_tt_ft/truck_test.sh

Per-scene optimize from scatch

Make sure the ''checkpoints'' folder has ''init'' and ''MVSNet''. The training scripts will start to do initialization if there is no ''.pth'' files in a scene folder. It will start from the last ''.pth'' files until reach the iteration of ''maximum_step''.

NeRF Synthetics

train scripts
    bash dev_scripts/w_n360/chair.sh
    bash dev_scripts/w_n360/drums.sh
    bash dev_scripts/w_n360/ficus.sh
    bash dev_scripts/w_n360/hotdog.sh
    bash dev_scripts/w_n360/lego.sh
    bash dev_scripts/w_n360/materials.sh
    bash dev_scripts/w_n360/mic.sh
    bash dev_scripts/w_n360/ship.sh

ScanNet

train scripts
    bash dev_scripts/w_scannet_etf/scane101.sh
    bash dev_scripts/w_scannet_etf/scane241.sh

Tanks & Temples

train scripts
    bash dev_scripts/w_tt_ft/barn.sh
    bash dev_scripts/w_tt_ft/caterpillar.sh
    bash dev_scripts/w_tt_ft/family.sh
    bash dev_scripts/w_tt_ft/ignatius.sh
    bash dev_scripts/w_tt_ft/truck.sh

Acknowledgement

Our repo is developed based on MVSNet, NeRF, MVSNeRF, and NSVF.

Please also consider citing the corresponding papers.

The project is conducted collaboratively between Adobe Research and University of Southern California.

LICENSE

The repo is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 2.0, and is restricted to academic use only. See LICENSE.

Owner
Qiangeng Xu
Qiangeng Xu
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
Title: Graduate-Admissions-Predictor

The purpose of this project is create a predictive model capable of identifying the probability of a person securing an admit based on their personal profile parameters. Simplified visualisations hav

Akarsh Singh 1 Jan 26, 2022
AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models

AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models Description

Angel de Paula 0 Jun 08, 2022
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth

Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth This codebase implements the loss function described in: Insta

209 Dec 07, 2022
Data and analysis code for an MS on SK VOC genomes phenotyping/neutralisation assays

Description Summary of phylogenomic methods and analyses used in "Immunogenicity of convalescent and vaccinated sera against clinical isolates of ance

Finlay Maguire 1 Jan 06, 2022
The official implementation of CircleNet: Anchor-free Detection with Circle Representation, MICCAI 2030

CircleNet: Anchor-free Detection with Circle Representation The official implementation of CircleNet, MICCAI 2020 [PyTorch] [project page] [MICCAI pap

The Biomedical Data Representation and Learning Lab 45 Nov 18, 2022
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
A library for differentiable nonlinear optimization.

Theseus A library for differentiable nonlinear optimization built on PyTorch to support constructing various problems in robotics and vision as end-to

Meta Research 1.1k Dec 30, 2022
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
E-Ink Magic Calendar that automatically syncs to Google Calendar and runs off a battery powered Raspberry Pi Zero

MagInkCal This repo contains the code needed to drive an E-Ink Magic Calendar that uses a battery powered (PiSugar2) Raspberry Pi Zero WH to retrieve

2.8k Dec 28, 2022
[NeurIPS '21] Adversarial Attacks on Graph Classification via Bayesian Optimisation (GRABNEL)

Adversarial Attacks on Graph Classification via Bayesian Optimisation @ NeurIPS 2021 This repository contains the official implementation of GRABNEL,

Xingchen Wan 12 Dec 23, 2022
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023
Image-retrieval-baseline - MUGE Multimodal Retrieval Baseline

MUGE Multimodal Retrieval Baseline This repo is implemented based on the open_cl

47 Dec 16, 2022
Bounding Wasserstein distance with couplings

BoundWasserstein These scripts reproduce the results of the article Bounding Wasserstein distance with couplings by Niloy Biswas and Lester Mackey. ar

Niloy Biswas 1 Jan 11, 2022
ICML 21 - Voice2Series: Reprogramming Acoustic Models for Time Series Classification

Voice2Series-Reprogramming Voice2Series: Reprogramming Acoustic Models for Time Series Classification International Conference on Machine Learning (IC

49 Jan 03, 2023