TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Overview

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

This is an implementation of TCPNet.

arch

Introduction

For video recognition task, a global representation summarizing the whole contents of the video snippets plays an important role for the final performance. However, existing video architectures usually generate it by using a simple, global average pooling (GAP) method, which has limited ability to capture complex dynamics of videos. For image recognition task, there exist evidences showing that covariance pooling has stronger representation ability than GAP. Unfortunately, such plain covariance pooling used in image recognition is an orderless representative, which cannot model spatio-temporal structure inherent in videos. Therefore, this paper proposes a Temporal-attentive Covariance Pooling (TCP), inserted at the end of deep architectures, to produce powerful video representations. Specifi- cally, our TCP first develops a temporal attention module to adaptively calibrate spatio-temporal features for the succeeding covariance pooling, approximatively producing attentive covariance representations. Then, a temporal covariance pooling performs temporal pooling of the attentive covariance representations to char- acterize both intra-frame correlations and inter-frame cross-correlations of the calibrated features. As such, the proposed TCP can capture complex temporal dynamics. Finally, a fast matrix power normalization is introduced to exploit geometry of covariance representations. Note that our TCP is model-agnostic and can be flexibly integrated into any video architectures, resulting in TCPNet for effective video recognition. The extensive experiments on six benchmarks (e.g., Kinetics, Something-Something V1 and Charades) using various video architectures show our TCPNet is clearly superior to its counterparts, while having strong generalization ability.

Citation

@InProceedings{Gao_2021_TCP,
                author = {Zilin, Gao and Qilong, Wang and Bingbing, Zhang and Qinghua, Hu and Peihua, Li},
                title = {Temporal-attentive Covariance Pooling Networks for Video Recognition},
                booktitle = {arxiv preprint axXiv:2021.06xxx},
                year = {2021}
  }

Model Zoo

Kinetics-400

Method Backbone frames 1 crop Acc (%) 30 views Acc (%) Model Pretrained Model test log
TCPNet TSN R50 8f 72.4/90.4 75.3/91.8 K400_TCP_TSN_R50_8f Img1K_R50_GCP log
TCPNet TEA R50 8f 73.9/91.6 76.8/92.9 K400_TCP_TEA_R50_8f Img1K_Res2Net50_GCP log
TCPNet TSN R152 8f 75.7/92.2 78.3/93.7 K400_TCP_TSN_R152_8f Img11K_1K_R152_GCP log
TCPNet TSN R50 16f 73.9/91.2 75.8/92.1 K400_TCP_TSN_R50_16f Img1K_R50_GCP log
TCPNet TEA R50 16f 75.3/92.2 77.2/93.1 K400_TCP_TEA_R50_16f Img1K_Res2Net50_GCP log
TCPNet TSN R152 16f 77.2/93.1 79.3/94.0 K400_TCP_TSN_R152_16f Img11K_1K_R152_GCP TODO

Mini-Kinetics-200

Method Backbone frames 1 crop Acc (%) 30 views Acc (%) Model Pretrained Model
TCPNet TSN R50 8f 78.7 80.7 K200_TCP_TSN_8f K400_TCP_TSN_R50_8f

Environments

pytorch v1.0+(for TCP_TSN); v1.0~1.4(for TCP+TEA)

ffmpeg

graphviz pip install graphviz

tensorboard pip install tensorboardX

tqdm pip install tqdm

scikit-learn conda install scikit-learn

matplotlib conda install -c conda-forge matplotlib

fvcore pip install 'git+https://github.com/facebookresearch/fvcore'

Dataset Preparation

We provide a detailed dataset preparation guideline for Kinetics-400 and Mini-Kinetics-200. See Dataset preparation.

StartUp

  1. download the pretrained model and put it in pretrained_models/
  2. execute the training script file e.g.: sh script/K400/train_TCP_TSN_8f_R50.sh
  3. execute the inference script file e.g.: sh script/K400/test_TCP_TSN_R50_8f.sh

TCP Code


├── ops
|    ├── TCP
|    |   ├── TCP_module.py
|    |   ├── TCP_att_module.py
|    |   ├── TSA.py
|    |   └── TCA.py
|    ├ ...
├ ...

Acknowledgement

  • We thank TSM for providing well-designed 2D action recognition toolbox.
  • We also refer to some functions from iSQRT, TEA and Non-local.
  • Mini-K200 dataset samplling strategy follows Mini_K200.
  • We would like to thank Facebook for developing pytorch toolbox.

Thanks for their work!

Owner
Zilin Gao
Zilin Gao
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

Project This repo has been populated by an initial template to help get you started. Please make sure to update the content to build a great experienc

Microsoft 674 Dec 26, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks This is the official repository for our paper: Sharpness-aware Quantization for Deep Neural Netw

Zhuang AI Group 30 Dec 19, 2022
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs.

Lunar Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs. About Lunar can be modified to work

Zeyad Mansour 276 Jan 07, 2023
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone

Andrew Jesson 19 Jun 23, 2022
Official code repository for the work: "The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement"

Handheld Multi-Frame Neural Depth Refinement This is the official code repository for the work: The Implicit Values of A Good Hand Shake: Handheld Mul

55 Dec 14, 2022
Some pre-commit hooks for OpenMMLab projects

pre-commit-hooks Some pre-commit hooks for OpenMMLab projects. Using pre-commit-hooks with pre-commit Add this to your .pre-commit-config.yaml - rep

OpenMMLab 16 Nov 29, 2022
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

Jamie J. Seol 22 Dec 13, 2022
Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch

Bootstrap Your Own Latent (BYOL), in Pytorch Practical implementation of an astoundingly simple method for self-supervised learning that achieves a ne

Phil Wang 1.4k Dec 29, 2022
Improving 3D Object Detection with Channel-wise Transformer

"Improving 3D Object Detection with Channel-wise Transformer" Thanks for the OpenPCDet, this implementation of the CT3D is mainly based on the pcdet v

Hualian Sheng 107 Dec 20, 2022
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise

45 Dec 08, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc

103 Jan 06, 2023
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

62 Dec 30, 2022
SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 07, 2023