TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Overview

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

This is an implementation of TCPNet.

arch

Introduction

For video recognition task, a global representation summarizing the whole contents of the video snippets plays an important role for the final performance. However, existing video architectures usually generate it by using a simple, global average pooling (GAP) method, which has limited ability to capture complex dynamics of videos. For image recognition task, there exist evidences showing that covariance pooling has stronger representation ability than GAP. Unfortunately, such plain covariance pooling used in image recognition is an orderless representative, which cannot model spatio-temporal structure inherent in videos. Therefore, this paper proposes a Temporal-attentive Covariance Pooling (TCP), inserted at the end of deep architectures, to produce powerful video representations. Specifi- cally, our TCP first develops a temporal attention module to adaptively calibrate spatio-temporal features for the succeeding covariance pooling, approximatively producing attentive covariance representations. Then, a temporal covariance pooling performs temporal pooling of the attentive covariance representations to char- acterize both intra-frame correlations and inter-frame cross-correlations of the calibrated features. As such, the proposed TCP can capture complex temporal dynamics. Finally, a fast matrix power normalization is introduced to exploit geometry of covariance representations. Note that our TCP is model-agnostic and can be flexibly integrated into any video architectures, resulting in TCPNet for effective video recognition. The extensive experiments on six benchmarks (e.g., Kinetics, Something-Something V1 and Charades) using various video architectures show our TCPNet is clearly superior to its counterparts, while having strong generalization ability.

Citation

@InProceedings{Gao_2021_TCP,
                author = {Zilin, Gao and Qilong, Wang and Bingbing, Zhang and Qinghua, Hu and Peihua, Li},
                title = {Temporal-attentive Covariance Pooling Networks for Video Recognition},
                booktitle = {arxiv preprint axXiv:2021.06xxx},
                year = {2021}
  }

Model Zoo

Kinetics-400

Method Backbone frames 1 crop Acc (%) 30 views Acc (%) Model Pretrained Model test log
TCPNet TSN R50 8f 72.4/90.4 75.3/91.8 K400_TCP_TSN_R50_8f Img1K_R50_GCP log
TCPNet TEA R50 8f 73.9/91.6 76.8/92.9 K400_TCP_TEA_R50_8f Img1K_Res2Net50_GCP log
TCPNet TSN R152 8f 75.7/92.2 78.3/93.7 K400_TCP_TSN_R152_8f Img11K_1K_R152_GCP log
TCPNet TSN R50 16f 73.9/91.2 75.8/92.1 K400_TCP_TSN_R50_16f Img1K_R50_GCP log
TCPNet TEA R50 16f 75.3/92.2 77.2/93.1 K400_TCP_TEA_R50_16f Img1K_Res2Net50_GCP log
TCPNet TSN R152 16f 77.2/93.1 79.3/94.0 K400_TCP_TSN_R152_16f Img11K_1K_R152_GCP TODO

Mini-Kinetics-200

Method Backbone frames 1 crop Acc (%) 30 views Acc (%) Model Pretrained Model
TCPNet TSN R50 8f 78.7 80.7 K200_TCP_TSN_8f K400_TCP_TSN_R50_8f

Environments

pytorch v1.0+(for TCP_TSN); v1.0~1.4(for TCP+TEA)

ffmpeg

graphviz pip install graphviz

tensorboard pip install tensorboardX

tqdm pip install tqdm

scikit-learn conda install scikit-learn

matplotlib conda install -c conda-forge matplotlib

fvcore pip install 'git+https://github.com/facebookresearch/fvcore'

Dataset Preparation

We provide a detailed dataset preparation guideline for Kinetics-400 and Mini-Kinetics-200. See Dataset preparation.

StartUp

  1. download the pretrained model and put it in pretrained_models/
  2. execute the training script file e.g.: sh script/K400/train_TCP_TSN_8f_R50.sh
  3. execute the inference script file e.g.: sh script/K400/test_TCP_TSN_R50_8f.sh

TCP Code


├── ops
|    ├── TCP
|    |   ├── TCP_module.py
|    |   ├── TCP_att_module.py
|    |   ├── TSA.py
|    |   └── TCA.py
|    ├ ...
├ ...

Acknowledgement

  • We thank TSM for providing well-designed 2D action recognition toolbox.
  • We also refer to some functions from iSQRT, TEA and Non-local.
  • Mini-K200 dataset samplling strategy follows Mini_K200.
  • We would like to thank Facebook for developing pytorch toolbox.

Thanks for their work!

Owner
Zilin Gao
Zilin Gao
Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation"

SharinGAN Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation" The official project we

Koutilya PNVR 23 Oct 19, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023
[ICML 2022] The official implementation of Graph Stochastic Attention (GSAT).

Graph Stochastic Attention (GSAT) The official implementation of GSAT for our paper: Interpretable and Generalizable Graph Learning via Stochastic Att

85 Nov 27, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
"Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices", official implementation

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices This repository contains the official PyTorch implemen

Yandex Research 21 Oct 18, 2022
Convert openmmlab (not only mmdetection) series model to tensorrt

MMDet to TensorRT This project aims to convert the mmdetection model to TensorRT model end2end. Focus on object detection for now. Mask support is exp

JinTian 4 Dec 17, 2021
Time Series Cross-Validation -- an extension for scikit-learn

TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini

Wenjie Zheng 222 Jan 01, 2023
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model

samplernn-pytorch A PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. It's based on the reference implem

DeepSound 261 Dec 14, 2022
Multi agent DDPG algorithm written in Python + Pytorch

Multi agent DDPG algorithm written in Python + Pytorch. It also includes a Jupyter notebook, Tennis.ipynb, as a showcase.

Rogier Wachters 2 Feb 26, 2022
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
MediaPipeのPythonパッケージのサンプルです。2020/12/11時点でPython実装のある4機能(Hands、Pose、Face Mesh、Holistic)について用意しています。

mediapipe-python-sample MediaPipeのPythonパッケージのサンプルです。 2020/12/11時点でPython実装のある以下4機能について用意しています。 Hands Pose Face Mesh Holistic Requirement mediapipe 0.

KazuhitoTakahashi 217 Dec 12, 2022
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
Code for Towards Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games

Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games How to run our algorithm? Create the new environment using: conda

MARL @ SJTU 8 Dec 27, 2022