Does Pretraining for Summarization Reuqire Knowledge Transfer?

Overview

Does Pretraining for Summarization Reuqire Knowledge Transfer?

This repository is the official implementation of the work in the paper Does Pretraining for Summarization Reuqire Knowledge Transfer? to appear in Findings of EMNLP 2021.
You can find the paper on arXiv here: https://arxiv.org/abs/2109.04953

Requirements

This code requires Python 3 (tested using version 3.6)

To install requirements, run:

pip install -r requirements.txt

Preparing finetuning datasets

To prepare a summarization dataset for finetuning, run the corresponding script in the finetuning_datasetgen folder. For example, to prepare the cnn-dailymail dataset run:

cd finetuning_datasetgen
python cnndm.py

Running finetuning experiment

We show here how to run training, prediction and evaluation steps for a finetuning experiment. We assume that you have downloaded the pretrained models in the pretrained_models folder from the provided Google Drive link (see pretrained_models/README.md) If you want to pretrain models yourself, see latter part of this readme for the instructions.

All models in our work are trained using allennlp config files which are in .jsonnet format. To run a finetuning experiment, simply run

# for t5-like models
./pipeline_t5.sh 
   
    

# for pointer-generator models
./pipeline_pg.sh 
    

    
   

For example, for finetuning a T5 model on cnndailymail dataset, starting from a model pretrained with ourtasks-nonsense pretraining dataset, run

./pipeline_t5.sh finetuning_experiments/cnndm/t5-ourtasks-nonsense

Similarly, for finetuning a randomly-initialized pointer-generator model, run

./pipeline_pg.sh finetuning_experiments/cnndm/pg-randominit

The trained model and output files would be available in the folder that would be created by the script.

model.tar.gz contains the trained (finetuned) model

test_outputs.jsonl contains the outputs of the model on the test split.

test_genmetrics.json contains the ROUGE scores of the output

Creating pretraining datasets

We have provided the nonsense pretraining datasets used in our work via Google Drive (see dataset_root/pretraining_datasets/README.md for instructions)

However, if you want to generate your own pretraining corpus, you can run

cd pretraining_datasetgen
# for generating dataset using pretraining tasks
python ourtasks.py
# for generating dataset using STEP pretraining tasks
python steptasks.py

These commands would create pretraining datasets using nonsense. If you want to create datasets starting from wikipedia documents please look into the two scripts which guide you how to do that by commenting/uncommenting two blocks of code.

Pretraining models

Although we provide you the pretrained model checkpoints via GoogleDrive, if you want to pretrain your own models, you can do that by using the corresponding pretraining config file. As an example, we have provided a config file which pretrains on ourtasks-nonsense dataset. Make sure that the pretraining dataset files exist (either created by you or downloaded from GoogleDrive) before running the pretraining command. The pretraining is also done using the same shell scripts used for the finetuning experiments. For example, to pretrain a model on the ourtasks-nonsense dataset, simply run :

./pipeline_t5.sh pretraining_experiments/pretraining_t5_ourtasks_nonsense
Owner
Approximately Correct Machine Intelligence (ACMI) Lab
Research on machine learning, its social impacts, and applications to healthcare. PI—@zackchase
Approximately Correct Machine Intelligence (ACMI) Lab
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022
Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters"

Manga Character Screentone Synthesis Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters" presented in IEEE ISM 2

Tsubota 2 Nov 20, 2021
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
Code and training data for our ECCV 2016 paper on Unsupervised Learning

Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order

Ishan Misra 44 Dec 08, 2021
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021
A foreign language learning aid using a neural network to predict probability of translating foreign words

Langy Langy is a reading-focused foreign language learning aid orientated towards young children. Reading is an activity that every child knows. It is

Shona Lowden 6 Nov 17, 2021
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
Measure WWjj polarization fraction

WlWl Polarization Measure WWjj polarization fraction Paper: arXiv:2109.09924 Notice: This code can only be used for the inference process, if you want

4 Apr 10, 2022
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code

Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas

17 Dec 19, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision.

PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{CV2018, author = {Donny You ( Donny You 40 Sep 14, 2022

OMNIVORE is a single vision model for many different visual modalities

Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns

Meta Research 451 Dec 27, 2022
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
git《USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation》(2020) GitHub: [fig2]

USD-Seg This project is an implement of paper USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation, based on FCOS detector f

Ruolin Ye 80 Nov 28, 2022
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022