I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining

Related tags

Deep LearningISECRET
Overview

I-SECRET

This is the implementation of the MICCAI 2021 Paper "I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining".

Data preparation

  1. Firstly, download EyeQ dataset from EyeQ.
  2. Split the dataset into train/val/test according to the EyePACS challenge.
  3. Run
python tools/degrade_eyeq.py --degrade_dir ${DATA_PATH}$ --output_dir $OUTPUT_PATH$ --mask_dir ${MASK_PATH}$ --gt_dir ${GT_PATH}$.

Note that this scipt should be applied for usable dataset for cropping pre-processing.

  1. Make the architecture of the EyeQ directory as:
.
├── 
├── train
│   └── crop_good
│   └── degrade_good
│   └── crop_usable
├── val
│   └── crop_good
│   └── degrade_good
│   └── crop_usable
├── test
│   └── crop_good
│   └── degrade_good
│   └── crop_usable

Here, the crop_good is the ${GT_PATH}$ in the step 3, and degrade_good is the ${OUTPUT_PATH}$ in the step 3.

Package install

Run

pip install -r requirements.txt

Run pipeline

Run the baseline model

python main.py --model i-secret --lambda_rec 1 --lambda_gan 1 --data_root_dir ${DATA_DIR}$ --gpu ${GPU_INDEXS}$ -- batch size {BATCH_SIZE}$  --name baseline --experiment_root_dir ${LOG_DIR}$

Run the model with IS-loss

python main.py --model i-secret --lambda_is 1 --lambda_gan 1 --data_root_dir ${DATA_DIR}$ --gpu ${GPU_INDEXS}$ -- batch size {BATCH_SIZE}$  --name is_loss --experiment_root_dir ${LOG_DIR}$

Run the I-SECRET model

python main.py --model i-secret --lambda_is 1 --lambda_icc 1 --lambda_gan 1 --data_root_dir ${DATA_DIR}$ --gpu ${GPU_INDEXS}$ -- batch size {BATCH_SIZE}$  --name i-secret --experiment_root_dir ${LOG_DIR}$

Visualization

Go to the ${LOG_DIR}$ / ${EXPERIMENT_NAME}$ / checkpoint, run

tensorboard --logdir ./ --port ${PORT}$

then go to localhost:${PORT}$ for detailed logging and visualization.

Test and evalutation

Run

python main.py --test --resume 0 --test_dir ${INPUT_PATH}$ --output_dir ${OUTPUT_PATH}$ --name ${EXPERIMENT_NAME}$ --gpu ${GPU_INDEXS}$ -- batch size {BATCH_SIZE}$ 

Please note that the metric outputted by test script is under the PyTorch pre-process (resize etc.). It is not precise. Therefore, we need to run the evaluation scipt for further evaluation.

python tools/evaluate.py --test_dir ${OUTPUT_PATH}$ --gt_dir ${GT_PATH}$

Vessel segmentation

We apply the iter-Net framework. We simply replace the test set with the degraded images/enhanced images. For more details, please follow IterNet.

Future Plan

  • Cleaning codes
  • More SOTA backbones (ResNest ...)
  • WGAN loss
  • Internal evaluations for down-sampling tasks

Acknowledgment

Thanks for CutGAN for the implementation of patch NCE loss, EyeQ_Enhancement for degradation codes, Slowfast for the distributed training codes

Simple machine learning library / 簡單易用的機器學習套件

FukuML Simple machine learning library / 簡單易用的機器學習套件 Installation $ pip install FukuML Tutorial Lesson 1: Perceptron Binary Classification Learning Al

Fukuball Lin 279 Sep 15, 2022
Target Propagation via Regularized Inversion

Target Propagation via Regularized Inversion The present code implements an ideal formulation of target propagation using regularized inverses compute

Vincent Roulet 0 Dec 02, 2021
Exporter for Storage Area Network (SAN)

SAN Exporter Prometheus exporter for Storage Area Network (SAN). We all know that each SAN Storage vendor has their own glossary of terms, health/perf

vCloud 32 Dec 16, 2022
TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection

TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection; Accepted by ICCV2021. Note: The complete code (including training and t

S.X.Zhang 84 Dec 13, 2022
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication"

NFFT4ANOVA Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication" This package uses th

Theresa Wagner 1 Aug 10, 2022
Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J] (IEEE TCYB 2021, PyTorch Code)

Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all view

4 Nov 19, 2022
System Combination for Grammatical Error Correction Based on Integer Programming

System Combination for Grammatical Error Correction Based on Integer Programming This repository contains the code and scripts that implement the syst

NUS NLP Group 0 Mar 29, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
OpenCVのGrabCut()を利用したセマンティックセグメンテーション向けアノテーションツール(Annotation tool using GrabCut() of OpenCV. It can be used to create datasets for semantic segmentation.)

[Japanese/English] GrabCut-Annotation-Tool GrabCut-Annotation-Tool.mp4 OpenCVのGrabCut()を利用したアノテーションツールです。 セマンティックセグメンテーション向けのデータセット作成にご使用いただけます。 ※Grab

KazuhitoTakahashi 30 Nov 18, 2022
Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit

streamlit-manim Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit Installation I had to install pango with sudo apt-get

Adrien Treuille 6 Aug 03, 2022
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022)

anonymous 14 Oct 27, 2022
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont

AI2 125 Dec 22, 2022
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Davis Rempe 367 Dec 24, 2022
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection

CIFS This repository provides codes for CIFS (ICML 2021). CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Sel

Hanshu YAN 19 Nov 12, 2022
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .

DeepCTR DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can

浅梦 6.6k Jan 08, 2023
Bridging Composite and Real: Towards End-to-end Deep Image Matting

Bridging Composite and Real: Towards End-to-end Deep Image Matting Please note that the official repository of the paper Bridging Composite and Real:

Jizhizi_Li 30 Oct 31, 2022