I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining

Related tags

Deep LearningISECRET
Overview

I-SECRET

This is the implementation of the MICCAI 2021 Paper "I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining".

Data preparation

  1. Firstly, download EyeQ dataset from EyeQ.
  2. Split the dataset into train/val/test according to the EyePACS challenge.
  3. Run
python tools/degrade_eyeq.py --degrade_dir ${DATA_PATH}$ --output_dir $OUTPUT_PATH$ --mask_dir ${MASK_PATH}$ --gt_dir ${GT_PATH}$.

Note that this scipt should be applied for usable dataset for cropping pre-processing.

  1. Make the architecture of the EyeQ directory as:
.
├── 
├── train
│   └── crop_good
│   └── degrade_good
│   └── crop_usable
├── val
│   └── crop_good
│   └── degrade_good
│   └── crop_usable
├── test
│   └── crop_good
│   └── degrade_good
│   └── crop_usable

Here, the crop_good is the ${GT_PATH}$ in the step 3, and degrade_good is the ${OUTPUT_PATH}$ in the step 3.

Package install

Run

pip install -r requirements.txt

Run pipeline

Run the baseline model

python main.py --model i-secret --lambda_rec 1 --lambda_gan 1 --data_root_dir ${DATA_DIR}$ --gpu ${GPU_INDEXS}$ -- batch size {BATCH_SIZE}$  --name baseline --experiment_root_dir ${LOG_DIR}$

Run the model with IS-loss

python main.py --model i-secret --lambda_is 1 --lambda_gan 1 --data_root_dir ${DATA_DIR}$ --gpu ${GPU_INDEXS}$ -- batch size {BATCH_SIZE}$  --name is_loss --experiment_root_dir ${LOG_DIR}$

Run the I-SECRET model

python main.py --model i-secret --lambda_is 1 --lambda_icc 1 --lambda_gan 1 --data_root_dir ${DATA_DIR}$ --gpu ${GPU_INDEXS}$ -- batch size {BATCH_SIZE}$  --name i-secret --experiment_root_dir ${LOG_DIR}$

Visualization

Go to the ${LOG_DIR}$ / ${EXPERIMENT_NAME}$ / checkpoint, run

tensorboard --logdir ./ --port ${PORT}$

then go to localhost:${PORT}$ for detailed logging and visualization.

Test and evalutation

Run

python main.py --test --resume 0 --test_dir ${INPUT_PATH}$ --output_dir ${OUTPUT_PATH}$ --name ${EXPERIMENT_NAME}$ --gpu ${GPU_INDEXS}$ -- batch size {BATCH_SIZE}$ 

Please note that the metric outputted by test script is under the PyTorch pre-process (resize etc.). It is not precise. Therefore, we need to run the evaluation scipt for further evaluation.

python tools/evaluate.py --test_dir ${OUTPUT_PATH}$ --gt_dir ${GT_PATH}$

Vessel segmentation

We apply the iter-Net framework. We simply replace the test set with the degraded images/enhanced images. For more details, please follow IterNet.

Future Plan

  • Cleaning codes
  • More SOTA backbones (ResNest ...)
  • WGAN loss
  • Internal evaluations for down-sampling tasks

Acknowledgment

Thanks for CutGAN for the implementation of patch NCE loss, EyeQ_Enhancement for degradation codes, Slowfast for the distributed training codes

FID calculation with proper image resizing and quantization steps

clean-fid: Fixing Inconsistencies in FID Project | Paper The FID calculation involves many steps that can produce inconsistencies in the final metric.

Gaurav Parmar 606 Jan 06, 2023
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."

pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions

FolkScientistInDL 8 Oct 08, 2022
3D-printable hand-strapped keyboard

Note: This repo has not been cleaned up and prepared for general consumption at all. This is just a dump of the project files. If there is any interes

Wojciech Baranowski 41 Dec 31, 2022
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
Open source hardware and software platform to build a small scale self driving car.

Donkeycar is minimalist and modular self driving library for Python. It is developed for hobbyists and students with a focus on allowing fast experimentation and easy community contributions.

Autorope 2.4k Jan 04, 2023
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Jonas Köhler 893 Dec 28, 2022
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
Simple Linear 2nd ODE Solver GUI - A 2nd constant coefficient linear ODE solver with simple GUI using euler's method

Simple_Linear_2nd_ODE_Solver_GUI Description It is a 2nd constant coefficient li

:) 4 Feb 05, 2022
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023
This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

0 Feb 02, 2022
PyTorch implementation of the wavelet analysis from Torrence & Compo

Continuous Wavelet Transforms in PyTorch This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The co

Tom Runia 262 Dec 21, 2022
Bolt Online Learning Toolbox

Bolt Online Learning Toolbox Bolt features discriminative learning of linear predictors (e.g. SVM or Logistic Regression) using fast online learning a

Peter Prettenhofer 87 Dec 12, 2022
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
Implementation of the ICCV'21 paper Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases

Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases [Papers 1, 2][Project page] [Video] The implementation of the papers Temporal

56 Nov 21, 2022
[NeurIPS '21] Adversarial Attacks on Graph Classification via Bayesian Optimisation (GRABNEL)

Adversarial Attacks on Graph Classification via Bayesian Optimisation @ NeurIPS 2021 This repository contains the official implementation of GRABNEL,

Xingchen Wan 12 Dec 23, 2022
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
Repository accompanying the "Sign Pose-based Transformer for Word-level Sign Language Recognition" paper

by Matyáš Boháček and Marek Hrúz, University of West Bohemia Should you have any questions or inquiries, feel free to contact us here. Repository acco

Matyáš Boháček 30 Dec 30, 2022
NeuralForecast is a Python library for time series forecasting with deep learning models

NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate m

Nixtla 1.1k Jan 03, 2023
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022