Authors: Ada Madejska, MCDB, UCSB (contact: [email protected]) Nick Noll, UCSB This pipeline takes error-prone Nanopore reads and tries to increase the percentage identity of the results of identifying species with BLAST. The reads in fastq format are put through the pipeline which includes the following steps. 1. Quality control - very short and very long reads (reads that highly deviate from the usual length of the 16S sequence) are dropped. 2. Kmer frequency matrix - make a kmer frequency matrix based on the reads from the quality control step. The value of k can be changed (k=5 or 6 is recommended) 3. UMAP projection and HDBSCAN clustering - the kmer frequency matrix is used to create a UMAP projection. The default parameters for UMAP and HDBSCAN functions have been chosen based on mock dataset but can be changed. 4. Refinement - based on our tests on mock datasets, sometimes reads from different species can cluster together. To prevent that, we include a refinement step based on MSA of Clustal Omega on each cluster. The alignment outputs a guide tree which is used for dividing the cluster into smaller subclusters. The distance threshold can be changed to suit each dataset. 5. Consensus making - lastly, based on the defined clusters, the last step creates a consensus sequence based on majority calling. The direction of the reads is fixed using minimap2, the alignment is performed by MAFFT, and the consensus is created using em_cons. The reads are run through BLASTN to check for identity of each cluster. Software Dependencies: To successfully run the pipeline, certain software need to be installed. 1. Minimap2 - for the consensus making step (https://github.com/lh3/minimap2) 2. MAFFT - for alignment in the consensus making step (https://mafft.cbrc.jp/alignment/software/) 3. EM_CONS - for creating the consensus (http://emboss.sourceforge.net/apps/cvs/emboss/apps/cons.html) 4. NCBIN - for identification of the consensus sequences in the database (https://ftp.ncbi.nlm.nih.gov/blast/executables/LATEST/) (a 16S database is also required) 5. CLUSTALO - for the refinement step (http://www.clustal.org/omega/) Specifications: This pipeline runs in python3.8.10 and julia v"1.4.1". The following Python libraries are also required: BioPython hdbscan matplotlib pandas sklearn umap Following Julia packages are required: Pkg DataFrames CSV
A pipeline that creates consensus sequences from a Nanopore reads. I
Overview
ForecastGA is a Python tool to forecast Google Analytics data using several popular time series models.
ForecastGA is a tool that combines a couple of popular libraries, Atspy and googleanalytics, with a few enhancements.
The lastest all in one bombing tool coded in python uses tbomb api
BaapG-Attack is a python3 based script which is officially made for linux based distro . It is inbuit mass bomber with sms, mail, calls and many more bombing
Pypeln is a simple yet powerful Python library for creating concurrent data pipelines.
Pypeln Pypeln (pronounced as "pypeline") is a simple yet powerful Python library for creating concurrent data pipelines. Main Features Simple: Pypeln
Deep universal probabilistic programming with Python and PyTorch
Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab
Open-source Laplacian Eigenmaps for dimensionality reduction of large data in python.
Fast Laplacian Eigenmaps in python Open-source Laplacian Eigenmaps for dimensionality reduction of large data in python. Comes with an wrapper for NMS
A highly efficient and modular implementation of Gaussian Processes in PyTorch
GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian
Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python
Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python 📊
A DSL for data-driven computational pipelines
"Dataflow variables are spectacularly expressive in concurrent programming" Henri E. Bal , Jennifer G. Steiner , Andrew S. Tanenbaum Quick overview Ne
This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks
This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks
Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.
Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.
A data parser for the internal syncing data format used by Fog of World.
A data parser for the internal syncing data format used by Fog of World. The parser is not designed to be a well-coded library with good performance, it is more like a demo for showing the data struc
Project: Netflix Data Analysis and Visualization with Python
Project: Netflix Data Analysis and Visualization with Python Table of Contents General Info Installation Demo Usage and Main Functionalities Contribut
Repositori untuk menyimpan material Long Course STMKGxHMGI tentang Geophysical Python for Seismic Data Analysis
Long Course "Geophysical Python for Seismic Data Analysis" Instruktur: Dr.rer.nat. Wiwit Suryanto, M.Si Dipersiapkan oleh: Anang Sahroni Waktu: Sesi 1
Display the behaviour of a realtime program with a scope or logic analyser.
1. A monitor for realtime MicroPython code This library provides a means of examining the behaviour of a running system. It was initially designed to
MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020]
MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020] by Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang, Wa
Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions.
About Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions. The tool provides rich data and a summary g
A data structure that extends pyspark.sql.DataFrame with metadata information.
MetaFrame A data structure that extends pyspark.sql.DataFrame with metadata info
Scraping and analysis of leetcode-compensations page.
Leetcode compensations report Scraping and analysis of leetcode-compensations page.
Fast, flexible and easy to use probabilistic modelling in Python.
Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic
Lale is a Python library for semi-automated data science.
Lale is a Python library for semi-automated data science. Lale makes it easy to automatically select algorithms and tune hyperparameters of pipelines that are compatible with scikit-learn, in a type-