A pipeline that creates consensus sequences from a Nanopore reads. I

Overview
Authors: 
Ada Madejska, MCDB, UCSB  (contact: [email protected])
Nick Noll, UCSB

This pipeline takes error-prone Nanopore reads and tries to increase the percentage identity
of the results of identifying species with BLAST. The reads in fastq format are put through the pipeline
which includes the following steps.
1. Quality control 
    - very short and very long reads (reads that highly deviate from the usual length of the 16S sequence)
    are dropped.
2. Kmer frequency matrix
    - make a kmer frequency matrix based on the reads from the quality control step. The value of k
    can be changed (k=5 or 6 is recommended)
3. UMAP projection and HDBSCAN clustering
    - the kmer frequency matrix is used to create a UMAP projection. The default parameters for UMAP
    and HDBSCAN functions have been chosen based on mock dataset but can be changed. 
4. Refinement 
    - based on our tests on mock datasets, sometimes reads from different species can cluster together.
    To prevent that, we include a refinement step based on MSA of Clustal Omega on each cluster.
    The alignment outputs a guide tree which is used for dividing the cluster into smaller subclusters.
    The distance threshold can be changed to suit each dataset.
5. Consensus making
    - lastly, based on the defined clusters, the last step creates a consensus sequence based on 
    majority calling. The direction of the reads is fixed using minimap2, the alignment is performed 
    by MAFFT, and the consensus is created using em_cons. The reads are run through BLASTN to check
    for identity of each cluster. 

Software Dependencies:

To successfully run the pipeline, certain software need to be installed.
1. Minimap2 - for the consensus making step (https://github.com/lh3/minimap2)
2. MAFFT - for alignment in the consensus making step (https://mafft.cbrc.jp/alignment/software/)
3. EM_CONS - for creating the consensus (http://emboss.sourceforge.net/apps/cvs/emboss/apps/cons.html)
4. NCBIN - for identification of the consensus sequences in the database 
    (https://ftp.ncbi.nlm.nih.gov/blast/executables/LATEST/) (a 16S database is also required)
5. CLUSTALO - for the refinement step (http://www.clustal.org/omega/)

Specifications:

This pipeline runs in python3.8.10 and julia v"1.4.1". 

The following Python libraries are also required:
BioPython
hdbscan
matplotlib
pandas
sklearn
umap

Following Julia packages are required:
Pkg
DataFrames
CSV
Owner
Ada Madejska
UCSB Graduate Student in Computational Biology
Ada Madejska
ForecastGA is a Python tool to forecast Google Analytics data using several popular time series models.

ForecastGA is a tool that combines a couple of popular libraries, Atspy and googleanalytics, with a few enhancements.

JR Oakes 36 Jan 03, 2023
The lastest all in one bombing tool coded in python uses tbomb api

BaapG-Attack is a python3 based script which is officially made for linux based distro . It is inbuit mass bomber with sms, mail, calls and many more bombing

59 Dec 25, 2022
Pypeln is a simple yet powerful Python library for creating concurrent data pipelines.

Pypeln Pypeln (pronounced as "pypeline") is a simple yet powerful Python library for creating concurrent data pipelines. Main Features Simple: Pypeln

Cristian Garcia 1.4k Dec 31, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
Open-source Laplacian Eigenmaps for dimensionality reduction of large data in python.

Fast Laplacian Eigenmaps in python Open-source Laplacian Eigenmaps for dimensionality reduction of large data in python. Comes with an wrapper for NMS

17 Jul 09, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python

Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python 📊

Thomas 2 May 26, 2022
A DSL for data-driven computational pipelines

"Dataflow variables are spectacularly expressive in concurrent programming" Henri E. Bal , Jennifer G. Steiner , Andrew S. Tanenbaum Quick overview Ne

1.9k Jan 03, 2023
This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

Donald F. Ferguson 4 Mar 06, 2022
Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

HoloViz 2.9k Jan 06, 2023
A data parser for the internal syncing data format used by Fog of World.

A data parser for the internal syncing data format used by Fog of World. The parser is not designed to be a well-coded library with good performance, it is more like a demo for showing the data struc

Zed(Zijun) Chen 40 Dec 12, 2022
Project: Netflix Data Analysis and Visualization with Python

Project: Netflix Data Analysis and Visualization with Python Table of Contents General Info Installation Demo Usage and Main Functionalities Contribut

Kathrin Hälbich 2 Feb 13, 2022
Repositori untuk menyimpan material Long Course STMKGxHMGI tentang Geophysical Python for Seismic Data Analysis

Long Course "Geophysical Python for Seismic Data Analysis" Instruktur: Dr.rer.nat. Wiwit Suryanto, M.Si Dipersiapkan oleh: Anang Sahroni Waktu: Sesi 1

Anang Sahroni 0 Dec 04, 2021
Display the behaviour of a realtime program with a scope or logic analyser.

1. A monitor for realtime MicroPython code This library provides a means of examining the behaviour of a running system. It was initially designed to

Peter Hinch 17 Dec 05, 2022
MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020]

MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020] by Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang, Wa

112 Dec 28, 2022
Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions.

About Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions. The tool provides rich data and a summary g

9 Nov 16, 2022
A data structure that extends pyspark.sql.DataFrame with metadata information.

MetaFrame A data structure that extends pyspark.sql.DataFrame with metadata info

Invent Analytics 8 Feb 15, 2022
Scraping and analysis of leetcode-compensations page.

Leetcode compensations report Scraping and analysis of leetcode-compensations page.

utsav 96 Jan 01, 2023
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Jan 02, 2023
Lale is a Python library for semi-automated data science.

Lale is a Python library for semi-automated data science. Lale makes it easy to automatically select algorithms and tune hyperparameters of pipelines that are compatible with scikit-learn, in a type-

International Business Machines 293 Dec 29, 2022