A variant of LinUCB bandit algorithm with local differential privacy guarantee

Overview

Contents

LDP LinUCB

Locally Differentially Private (LDP) LinUCB is a variant of LinUCB bandit algorithm with local differential privacy guarantee, which can preserve users' personal data with theoretical guarantee.

Paper: Kai Zheng, Tianle Cai, Weiran Huang, Zhenguo Li, Liwei Wang. "Locally Differentially Private (Contextual) Bandits Learning." Advances in Neural Information Processing Systems. 2020.

Model Architecture

The server interacts with users in rounds. For a coming user, the server first transfers the current model parameters to the user. In the user side, the model chooses an action based on the user feature to play (e.g., choose a movie to recommend), and observes a reward (or loss) value from the user (e.g., rating of the movie). Then we perturb the data to be transferred by adding Gaussian noise. Finally, the server receives the perturbed data and updates the model. Details can be found in the original paper.

Dataset

Note that you can run the scripts based on the dataset mentioned in original paper. In the following sections, we will introduce how to run the scripts using the related dataset below.

Dataset used: MovieLens 100K

  • Dataset size:5MB, 100,000 ratings (1-5) from 943 users on 1682 movies.
  • Data format:csv/txt files

Environment Requirements

Script Description

Script and Sample Code

├── model_zoo
    ├── README.md                                // descriptions about all the models
    ├── research
        ├── rl
            ├── ldp_linucb
                ├── README.md                    // descriptions about LDP LinUCB
                ├── scripts
                │   ├── run_train_eval.sh        // shell script for running on Ascend
                ├── src
                │   ├── dataset.py               // dataset for movielens
                │   ├── linucb.py                // model
                ├── train_eval.py                // training script
                ├── result1.png                  // experimental result
                ├── result2.png                  // experimental result

Script Parameters

  • Parameters for preparing MovieLens 100K dataset

    'num_actions': 20         # number of candidate movies to be recommended
    'rank_k': 20              # rank of rating matrix completion
  • Parameters for LDP LinUCB, MovieLens 100K dataset

    'epsilon': 8e5            # privacy parameter
    'delta': 0.1              # privacy parameter
    'alpha': 0.1              # failure probability
    'iter_num': 1e6           # number of iterations

Launch

  • running on Ascend

    python train_eval.py > result.log 2>&1 &

The python command above will run in the background, you can view the results through the file result.log.

The regret value will be achieved as follows:

--> Step: 0, diff: 348.662, current_regret: 0.000, cumulative regret: 0.000
--> Step: 1, diff: 338.457, current_regret: 0.000, cumulative regret: 0.000
--> Step: 2, diff: 336.465, current_regret: 2.000, cumulative regret: 2.000
--> Step: 3, diff: 327.337, current_regret: 0.000, cumulative regret: 2.000
--> Step: 4, diff: 325.039, current_regret: 2.000, cumulative regret: 4.000
...

Model Description

The original paper assumes that the norm of user features is bounded by 1 and the norm of rating scores is bounded by 2. For the MovieLens dataset, we normalize rating scores to [-1,1]. Thus, we set sigma in Algorithm 5 to be $$4/epsilon * sqrt(2 * ln(1.25/delta))$$.

Performance

The performance for different privacy parameters:

  • x: number of iterations
  • y: cumulative regret

Result1

The performance compared with optimal non-private regret O(sqrt(T)):

  • x: number of iterations
  • y: cumulative regret divided by sqrt(T)

Result2

Description of Random Situation

In train_eval.py, we randomly sample a user at each round. We also add Gaussian noise to the date being transferred.

ModelZoo Homepage

Please check the official homepage.

You might also like...
Open source home automation that puts local control and privacy first
Open source home automation that puts local control and privacy first

Home Assistant Open source home automation that puts local control and privacy first. Powered by a worldwide community of tinkerers and DIY enthusiast

Open source home automation that puts local control and privacy first.
Open source home automation that puts local control and privacy first.

Home Assistant Open source home automation that puts local control and privacy first. Powered by a worldwide community of tinkerers and DIY enthusiast

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

A playable version of Chess – classic two-player, various AI levels, and the crazyhouse variant! Written in Python 3

A playable version of Chess – classic two-player, various AI levels, and the crazyhouse variant! Written in Python 3. Requires the installation of PIL/Pillow and Requests

Minimalistic generic chess variant GUI using pyffish and PySimpleGUI, based on the PySimpleGUI Chess Demo

FairyFishGUI Minimalistic generic chess variant GUI using pyffish and PySimpleGUI, based on the PySimpleGUI Chess Demo. Supports all chess variants su

A variant caller for the GBA gene using WGS data

Gauchian: WGS-based GBA variant caller Gauchian is a targeted variant caller for the GBA gene based on a whole-genome sequencing (WGS) BAM file. Gauch

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Implementation of the Transformer variant proposed in
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Pipenv-local-deps-repro - Reproduction of a local transitive dependency on pipenv

Reproduction of the pipenv bug with transitive local dependencies. Clone this re

A simple python script to dump remote files through a local file read or local file inclusion web vulnerability.
A simple python script to dump remote files through a local file read or local file inclusion web vulnerability.

A simple python script to dump remote files through a local file read or local file inclusion web vulnerability. Features Dump a single file w

Official code for Score-Based Generative Modeling through Stochastic Differential Equations
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Code for
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha

Supplementary code for the paper
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations
PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Releases(v1.1.0)
Owner
Weiran Huang
Codes for papers
Weiran Huang
Analysis scripts for QG equations

qg-edgeofchaos Analysis scripts for QG equations FIle/Folder Structure eigensolvers.py - Spectral and finite-difference solvers for Rossby wave eigenf

Norman Cao 2 Sep 27, 2022
CINECA molecular dynamics tutorial set

High Performance Molecular Dynamics Logging into CINECA's computer systems To logon to the M100 system use the following command from an SSH client ss

J. W. Dell 0 Mar 13, 2022
Convert tables stored as images to an usable .csv file

Convert an image of numbers to a .csv file This Python program aims to convert images of array numbers to corresponding .csv files. It uses OpenCV for

711 Dec 26, 2022
.npy, .npz, .mtx converter.

npy-converter Matrix Data Converter. Expand matrix for multi-thread, multi-process Divid matrix for multi-thread, multi-process Support: .mtx, .npy, .

taka 1 Feb 07, 2022
Package for decomposing EMG signals into motor unit firings, as used in Formento et al 2021.

EMGDecomp Package for decomposing EMG signals into motor unit firings, created for Formento et al 2021. Based heavily on Negro et al, 2016. Supports G

13 Nov 01, 2022
Finds, downloads, parses, and standardizes public bikeshare data into a standard pandas dataframe format

Finds, downloads, parses, and standardizes public bikeshare data into a standard pandas dataframe format.

Brady Law 2 Dec 01, 2021
Python package for analyzing behavioral data for Brain Observatory: Visual Behavior

Allen Institute Visual Behavior Analysis package This repository contains code for analyzing behavioral data from the Allen Brain Observatory: Visual

Allen Institute 16 Nov 04, 2022
Kennedy Institute of Rheumatology University of Oxford Project November 2019

TradingBot6M Kennedy Institute of Rheumatology University of Oxford Project November 2019 Run Change api.txt to binance api key: https://www.binance.c

Kannan SAR 2 Nov 16, 2021
PySpark Structured Streaming ROS Kafka ApacheSpark Cassandra

PySpark-Structured-Streaming-ROS-Kafka-ApacheSpark-Cassandra The purpose of this project is to demonstrate a structured streaming pipeline with Apache

Zekeriyya Demirci 5 Nov 13, 2022
📊 Python Flask game that consolidates data from Nasdaq, allowing the user to practice buying and selling stocks.

Web Trader Web Trader is a trading website that consolidates data from Nasdaq, allowing the user to search up the ticker symbol and price of any stock

Paulina Khew 21 Aug 30, 2022
Sensitivity Analysis Library in Python (Numpy). Contains Sobol, Morris, Fractional Factorial and FAST methods.

Sensitivity Analysis Library (SALib) Python implementations of commonly used sensitivity analysis methods. Useful in systems modeling to calculate the

SALib 663 Jan 05, 2023
Ejercicios Panda usando Pandas

Readme Below we add configuration details to locally test your application To co

1 Jan 22, 2022
Very basic but functional Kakuro solver written in Python.

kakuro.py Very basic but functional Kakuro solver written in Python. It uses a reduction to exact set cover and Ali Assaf's elegant implementation of

Louis Abraham 4 Jan 15, 2022
Data-sets from the survey and analysis

bachelor-thesis "Umfragewerte.xlsx" contains the orginal survey results. "umfrage_alle.csv" contains the survey results but one participant is cancele

1 Jan 26, 2022
Generate lookml for views from dbt models

dbt2looker Use dbt2looker to generate Looker view files automatically from dbt models. Features Column descriptions synced to looker Dimension for eac

lightdash 126 Dec 28, 2022
bigdata_analyse 大数据分析项目

bigdata_analyse 大数据分析项目 wish 采用不同的技术栈,通过对不同行业的数据集进行分析,期望达到以下目标: 了解不同领域的业务分析指标 深化数据处理、数据分析、数据可视化能力 增加大数据批处理、流处理的实践经验 增加数据挖掘的实践经验

Way 2.4k Dec 30, 2022
Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

1 Feb 11, 2022
Open source platform for Data Science Management automation

Hydrosphere examples This repo contains demo scenarios and pre-trained models to show Hydrosphere capabilities. Data and artifacts management Some mod

hydrosphere.io 6 Aug 10, 2021
Pandas on AWS - Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON and EXCEL).

AWS Data Wrangler Pandas on AWS Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretMana

Amazon Web Services - Labs 3.3k Jan 04, 2023
Detailed analysis on fraud claims in insurance companies, gives you information as to why huge loss take place in insurance companies

Insurance-Fraud-Claims Detailed analysis on fraud claims in insurance companies, gives you information as to why huge loss take place in insurance com

1 Jan 27, 2022