Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Overview

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

This repository is the official PyTorch implementation of Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (arxiv, supplementary).

🚀 🚀 🚀 News:


Existing blind image super-resolution (SR) methods mostly assume blur kernels are spatially invariant across the whole image. However, such an assumption is rarely applicable for real images whose blur kernels are usually spatially variant due to factors such as object motion and out-of-focus. Hence, existing blind SR methods would inevitably give rise to poor performance in real applications. To address this issue, this paper proposes a mutual affine network (MANet) for spatially variant kernel estimation. Specifically, MANet has two distinctive features. First, it has a moderate receptive field so as to keep the locality of degradation. Second, it involves a new mutual affine convolution (MAConv) layer that enhances feature expressiveness without increasing receptive field, model size and computation burden. This is made possible through exploiting channel interdependence, which applies each channel split with an affine transformation module whose input are the rest channel splits. Extensive experiments on synthetic and real images show that the proposed MANet not only performs favorably for both spatially variant and invariant kernel estimation, but also leads to state-of-the-art blind SR performance when combined with non-blind SR methods.

Requirements

  • Python 3.7, PyTorch >= 1.6, scipy >= 1.6.3
  • Requirements: opencv-python
  • Platforms: Ubuntu 16.04, cuda-10.0 & cuDNN v-7.5

Note: this repository is based on BasicSR. Please refer to their repository for a better understanding of the code framework.

Quick Run

Download stage3_MANet+RRDB_x4.pth from release and put it in ./pretrained_models. Then, run this command:

cd codes
python test.py --opt options/test/test_stage3.yml

Data Preparation

To prepare data, put training and testing sets in ./datasets as ./datasets/DIV2K/HR/0801.png. Commonly used datasets can be downloaded here.

Training

Step1: to train MANet, run this command:

python train.py --opt options/train/train_stage1.yml

Step2: to train non-blind RRDB, run this command:

python train.py --opt options/train/train_stage2.yml

Step3: to fine-tune RRDB with MANet, run this command:

python train.py --opt options/train/train_stage3.yml

All trained models can be downloaded from release. For testing, downloading stage3 models is enough.

Testing

To test MANet (stage1, kernel estimation only), run this command:

python test.py --opt options/test/test_stage1.yml

To test RRDB-SFT (stage2, non-blind SR with ground-truth kernel), run this command:

python test.py --opt options/test/test_stage2.yml

To test MANet+RRDB (stage3, blind SR), run this command:

python test.py --opt options/test/test_stage3.yml

Note: above commands generate LR images on-the-fly. To generate testing sets used in the paper, run this command:

python prepare_testset.py --opt options/test/prepare_testset.yml

Interactive Exploration of Kernels

To explore spaitally variant kernels on an image, use --save_kernel and run this command to save kernel:

python test.py --opt options/test/test_stage1.yml --save_kernel

Then, run this command to creat an interactive window:

python interactive_explore.py --path ../results/001_MANet_aniso_x4_test_stage1/toy_dataset1/npz/toy1.npz

Results

We conducted experiments on both spatially variant and invariant blind SR. Please refer to the paper and supp for results.

Citation

@inproceedings{liang21manet,
  title={Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution},
  author={Liang, Jingyun and Sun, Guolei and Zhang, Kai and Van Gool, Luc and Timofte, Radu},
  booktitle={IEEE Conference on International Conference on Computer Vision},
  year={2021}
}

License & Acknowledgement

This project is released under the Apache 2.0 license. The codes are based on BasicSR, MMSR, IKC and KAIR. Please also follow their licenses. Thanks for their great works.

Comments
  • Training and OOM

    Training and OOM

    Thanks for your code. I tried to train the model with train_stage1.yml, and the Cuda OOM. I am using 2080 Ti, I tried to reduce the batch size from 16 to 2 and the GT_size from 192 to 48. However, the training still OOM. May I know is there anything I missed? Thanks.

    opened by hcleung3325 9
  • [How to get SR image by spatially variant estimated blur kernels]

    [How to get SR image by spatially variant estimated blur kernels]

    Hi, Thank you for your excellent and interesting work! I'm not so clear about the process after kernels estimation during SR reconstruction after reading your paper. Could you please explain?

    opened by CaptainEven 7
  • The method of creating kernels

    The method of creating kernels

    I noticed that the function for creating kernel ('anisotropic_gaussian_kernel_matlab') is different from the standard gaussian distribution (e.g. the method that used in IKC, https://github.com/yuanjunchai/IKC/blob/2a846cf1194cd9bace08973d55ecd8fd3179fe48/codes/utils/util.py#L244). I am wondering why a different way is used here. Actually, a test dataset created by IKC with same sigma range seems to have poor performance on MANet, and vice versa.

    opened by zhiqiangfu 3
  • [import error]

    [import error]

        k = scipy.stats.multivariate_normal.pdf(pos, mean=[0, 0], cov=cov)
    AttributeError: module 'scipy' has no attribute 'stats'
    

    scipy version error? So, which version of scipy is required?

    opened by CaptainEven 2
  • A letter from afar

    A letter from afar

    Good evening, boss! I recently discovered your work about MANet.I found that the length of the gaussian kernel your method generated is equal to 18.Does this setting have any specific meaning? image

    opened by fenghao195 0
  • New Super-Resolution Benchmarks

    New Super-Resolution Benchmarks

    Hello,

    MSU Graphics & Media Lab Video Group has recently launched two new Super-Resolution Benchmarks.

    If you are interested in participating, you can add your algorithm following the submission steps:

    We would be grateful for your feedback on our work!

    opened by EvgeneyBogatyrev 0
  • About LR_Image PSNR/SSIM

    About LR_Image PSNR/SSIM

    Many thanks for your excellent work!

    I wonder what is the LR_Image PSNR/SSIM in the ablation study to evaluate the MANet about kernel prediction, and how to compute these?

    opened by Shaosifan 0
  • Questions about the paper

    Questions about the paper

    Thanks again for your great work. I have several questions about the paper. In Figure 2, you mentioned the input for MANet is a LR, but the input for your code seems to be DIV2K GT. Is there any further process I miss? Also, is that possible for the whole model trained in y-channel since my deployed environment only deals with y-channel? Thanks.

    opened by mrgreen3325 0
  • Issue about class BatchBlur_SV in utils.util

    Issue about class BatchBlur_SV in utils.util

    MANet/codes/utils/util.py Line 661: kernel = kernel.flatten(2).unsqueeze(0).expand(3,-1,-1,-1) The kernel shape: [B, HW, l, l] ->[B, HW, l^2] ->[1, B, HW, l^2] ->[C, B, HW, l^2] I think it is wrong, because it is not corresponding to the shape of pad.

    The line 661 should be kernel = kernel.flatten(2).unsqueeze(1).expand(-1, 3,-1,-1) The kernel shape: [B, HW, l, l] ->[B, HW, l^2] ->[B, 1, HW, l^2] ->[B, C, HW, l^2]

    opened by jiangmengyu18 0
Owner
Jingyun Liang
PhD Student at Computer Vision Lab, ETH Zurich
Jingyun Liang
Some pre-commit hooks for OpenMMLab projects

pre-commit-hooks Some pre-commit hooks for OpenMMLab projects. Using pre-commit-hooks with pre-commit Add this to your .pre-commit-config.yaml - rep

OpenMMLab 16 Nov 29, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023
We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC).

EMTAUC We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC). In this code, SBGA is considered a ba

7 Nov 24, 2022
Generate vibrant and detailed images using only text.

CLIP Guided Diffusion From RiversHaveWings. Generate vibrant and detailed images using only text. See captions and more generations in the Gallery See

Clay M. 401 Dec 28, 2022
Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning"

Prompt-Tuning Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning" Currently, we support the following huggigface models: Bart

Andrew Zeng 36 Dec 19, 2022
Awesome-AI-books - Some awesome AI related books and pdfs for learning and downloading

Awesome AI books Some awesome AI related books and pdfs for downloading and learning. Preface This repo only used for learning, do not use in business

luckyzhou 1k Jan 01, 2023
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 03, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.

BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.

Zhen Dong 36 Dec 02, 2022
EEGEyeNet is benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty

Introduction EEGEyeNet EEGEyeNet is a benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty. Overview T

Ard Kastrati 23 Dec 22, 2022
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
Implementation of the SUMO (Slim U-Net trained on MODA) model

SUMO - Slim U-Net trained on MODA Implementation of the SUMO (Slim U-Net trained on MODA) model as described in: TODO: add reference to paper once ava

6 Nov 19, 2022
Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022
Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Marko Jocić 922 Dec 19, 2022
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Beom 74 Dec 27, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

8 Nov 14, 2022
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul

Mateo Velásquez Molina 1 Jan 10, 2022