Pytorch Implementations of large number classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms.

Overview

Torch-template-for-deep-learning

Pytorch implementations of some **classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms **.

Requirements

· torch, torch-vision

· torchsummary

· other necessary

usage

A training script is supplied in “train_baseline.py”, the arguments are in “args.py

autoaug: Data enhancement and CNNs regularization

- StochDepth
- label smoothing
- Cutout
- DropBlock
- Mixup
- Manifold Mixup
- ShakeDrop
- cutmix

dataset_loader: Loaders for various datasets

from dataloder.scoliosis_dataloder import ScoliosisDataset
from dataloder.facial_attraction_dataloder import FacialAttractionDataset
from dataloder.fa_and_sco_dataloder import ScoandFaDataset
from dataloder.scofaNshot_dataloder import ScoandFaNshotDataset
from dataloder.age_dataloder import MegaAsiaAgeDataset
def load_dataset(data_config):
    if data_config.dataset == 'cifar10':
        training_transform=training_transforms()
        if data_config.autoaug:
            print('auto Augmentation the data !')
            training_transform.transforms.insert(0, Augmentation(fa_reduced_cifar10()))
        train_dataset = torchvision.datasets.CIFAR10(root=data_config.data_path,
                                                     train=True,
                                                     transform=training_transform,
                                                     download=True)
        val_dataset = torchvision.datasets.CIFAR10(root=data_config.data_path,
                                                   train=False,
                                                   transform=validation_transforms(),
                                                   download=True)
        return train_dataset,val_dataset
    elif data_config.dataset == 'cifar100':
        train_dataset = torchvision.datasets.CIFAR100(root=data_config.data_path,
                                                     train=True,
                                                     transform=training_transforms(),
                                                     download=True)
        val_dataset = torchvision.datasets.CIFAR100(root=data_config.data_path,
                                                   train=False,
                                                   transform=validation_transforms(),
                                                   download=True)
        return train_dataset, val_dataset

deployment: Deployment mode of pytorch model

Two deployment modes of pytorch model are provided, one is web deployment and the other is C + + deployment

Store the training weight file in ` flash_ Deployment ` folder

Then modify ' server.py '  path

Leverage ' client.Py ' call

models: Various classical deep learning models

Classical network
- **AlexNet**
- **VGG**
- **ResNet** 
- **ResNext** 
- **InceptionV1**
- **InceptionV2 and InceptionV3**
- **InceptionV4 and Inception-ResNet**
- **GoogleNet**
- **EfficienNet**
- **MNasNet**
- **DPN**
Attention network
- **SE Attention**
- **External Attention**
- **Self Attention**
- **SK Attention**
- **CBAM Attention**
- **BAM Attention**
- **ECA Attention**
- **DANet Attention**
- **Pyramid Split Attention(PSA)**
- **EMSA Attention**
- **A2Attention**
- **Non-Local Attention**
- **CoAtNet**
- **CoordAttention**
- **HaloAttention**
- **MobileViTAttention**
- **MUSEAttention**  
- **OutlookAttention**
- **ParNetAttention**
- **ParallelPolarizedSelfAttention**
- **residual_attention**
- **S2Attention**
- **SpatialGroupEnhance Attention**
- **ShuffleAttention**
- **GFNet Attention**
- **TripletAttention**
- **UFOAttention**
- **VIPAttention**
Lightweight network
- **MobileNets:**
- **MobileNetV2:**
- **MobileNetV3:**
- **ShuffleNet:**
- **ShuffleNet V2:**
- **SqueezeNet**
- **Xception**
- **MixNet**
- **GhostNet**
GAN
- **Auxiliary Classifier GAN**
- **Adversarial Autoencoder**
- **BEGAN**
- **BicycleGAN**
- **Boundary-Seeking GAN**
- **Cluster GAN**
- **Conditional GAN**
- **Context-Conditional GAN**
- **Context Encoder**
- **Coupled GAN**
- **CycleGAN**
- **Deep Convolutional GAN**
- **DiscoGAN**
- **DRAGAN**
- **DualGAN**
- **Energy-Based GAN**
- **Enhanced Super-Resolution GAN**  
- **Least Squares GAN**
- **Enhanced Super-Resolution GAN**
- **GAN**
- **InfoGAN**
- **Pix2Pix**
- **Relativistic GAN**
- **Semi-Supervised GAN**
- **StarGAN**
- **Wasserstein GAN**
- **Wasserstein GAN GP**
- **Wasserstein GAN DIV**
ObjectDetection-network
- **SSD:**
- **YOLO:**
- **YOLOv2:**
- **YOLOv3:**
- **FCOS:**
- **FPN:**
- **RetinaNet**
- **Objects as Points:**
- **FSAF:**
- **CenterNet**
- **FoveaBox**
Semantic Segmentation
- **FCN**
- **Fast-SCNN**
- **LEDNet:**
- **LRNNet**
- **FisheyeMODNet:**
Instance Segmentation
- **PolarMask** 
FaceDetectorAndRecognition
- **FaceBoxes**
- **LFFD**
- **VarGFaceNet**
HumanPoseEstimation
- **Stacked Hourglass Networks**
- **Simple Baselines**
- **LPN**

pytorch_loss: loss for training

- label-smooth
- amsoftmax
- focal-loss
- dual-focal-loss 
- triplet-loss
- giou-loss
- affinity-loss
- pc_softmax_cross_entropy
- ohem-loss(softmax based on line hard mining loss)
- large-margin-softmax(bmvc2019)
- lovasz-softmax-loss
- dice-loss(both generalized soft dice loss and batch soft dice loss)

tf_to_pytorch: TensorFlow to PyTorch Conversion

This directory is used to convert TensorFlow weights to PyTorch. 
It was hacked together fairly quickly, so the code is not the most 
beautiful (just a warning!), but it does the job. I will be refactoring it soon.

TorchCAM: Class Activation Mapping

Simple way to leverage the class-specific activation of convolutional layers in PyTorch.

- CAM
- ScoreCAM
- SSCAM
- ISCAM
- GradCAM
- Grad-CAM++
- Smooth Grad-CAM++
- XGradCAM
- LayerCAM

Note

Write at the end

At present, the work organized by this project is indeed not comprehensive enough. As the amount of reading increases, we will continue to improve this project. Welcome everyone star to support. If there are incorrect statements or incorrect code implementations in the article, you are welcome to point out~

Owner
Li Shengyan
Li Shengyan
ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Ching-Yao Chuang 49 Nov 22, 2022
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Demetri Pananos 9 Oct 04, 2022
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Benedek Rozemberczki 697 Dec 27, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022
This repository provides an efficient PyTorch-based library for training deep models.

s3sec Test AWS S3 buckets for read/write/delete access This tool was developed to quickly test a list of s3 buckets for public read, write and delete

Bytedance Inc. 123 Jan 05, 2023
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
A flexible submap-based framework towards spatio-temporally consistent volumetric mapping and scene understanding.

Panoptic Mapping This package contains panoptic_mapping, a general framework for semantic volumetric mapping. We provide, among other, a submap-based

ETHZ ASL 194 Dec 20, 2022
NAS-Bench-x11 and the Power of Learning Curves

NAS-Bench-x11 NAS-Bench-x11 and the Power of Learning Curves Shen Yan, Colin White, Yash Savani, Frank Hutter. NeurIPS 2021. Surrogate NAS benchmarks

AutoML-Freiburg-Hannover 13 Nov 18, 2022
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
Github Traffic Insights as Prometheus metrics.

github-traffic Github Traffic collects your repository's traffic data and exposes it as Prometheus metrics. Grafana dashboard that displays the metric

Grafana Labs 34 Oct 27, 2022
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".

#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate

Robert Hu 0 Nov 25, 2021
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 19, 2021
Migration of Edge-based Distributed Federated Learning

FedFly: Towards Migration in Edge-based Distributed Federated Learning About the research Due to mobility, a device participating in Federated Learnin

qub-blesson 11 Nov 13, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022