This repository provides an efficient PyTorch-based library for training deep models.

Related tags

Deep LearningHammer
Overview

An Efficient Library for Training Deep Models

This repository provides an efficient PyTorch-based library for training deep models.

Installation

Make sure your Python >= 3.7, CUDA version >= 11.1, and CUDNN version >= 7.6.5.

  1. Install package requirements via conda:

    conda create -n <ENV_NAME> python=3.7  # create virtual environment with Python 3.7
    conda activate <ENV_NAME>
    pip install -r requirements/minimal.txt -f https://download.pytorch.org/whl/cu111/torch_stable.html
  2. To use video visualizer (optional), please also install ffmpeg.

    • Ubuntu: sudo apt-get install ffmpeg.
    • MacOS: brew install ffmpeg.
  3. To reduce memory footprint (optional), you can switch to either jemalloc (recommended) or tcmalloc rather than your default memory allocator.

    • jemalloc (recommended):
      • Ubuntu: sudo apt-get install libjemalloc
    • tcmalloc:
      • Ubuntu: sudo apt-get install google-perftools
  4. (optional) To speed up data loading on NVIDIA GPUs, you can install DALI, together with dill to pickle python objects. It is optional to also install CuPy for some customized operations if needed:

    pip install --extra-index-url https://developer.download.nvidia.com/compute/redist --upgrade nvidia-dali-<CUDA_VERSION>
    pip install dill
    pip install cupy  # optional, installation can be slow

    For example, on CUDA 11.1, DALI can be installed via:

    pip install --extra-index-url https://developer.download.nvidia.com/compute/redist --upgrade nvidia-dali-cuda110  # CUDA 11.1 compatible
    pip install dill
    pip install cupy  # optional, installation can be slow

Quick Demo

Train StyleGAN2 on FFHQ in Resolution of 256x256

In your Terminal, run:

./scripts/training_demos/stylegan2_ffhq256.sh <NUM_GPUS> <PATH_TO_DATA> [OPTIONS]

where

  • refers to the number of GPUs. Setting as 1 helps launch a training job on single-GPU platforms.

  • refers to the path of FFHQ dataset (in resolution of 256x256) with zip format. If running on local machines, a soft link of the data will be created under the data folder of the working directory to save disk space.

  • [OPTIONS] refers to any additional option to pass. Detailed instructions on available options can be shown via ./scripts/training_demos/stylegan2_ffhq256.sh --help .

This demo script uses stylegan2_ffhq256 as the default value of job_name, which is particularly used to identify experiments. Concretely, a directory with name job_name will be created under the root working directory (with is set as work_dirs/ by default). To prevent overwriting previous experiments, an exception will be raised to interrupt the training if the job_name directory has already existed. To change the job name, please use --job_name= option.

More Demos

Please find more training demos under ./scripts/training_demos/.

Inspect Training Results

Besides using TensorBoard to track the training process, the raw results (e.g., training losses and running time) are saved in JSON format. They can be easily inspected with the following script

import json

file_name = '
   
    /log.json'
   

data_entries = []
with open(file_name, 'r') as f:
    for line in f:
        data_entry = json.loads(line)
        data_entries.append(data_entry)

# An example of data entry
# {"Loss/D Fake": 0.4833524551040682, "Loss/D Real": 0.4966000154727226, "Loss/G": 1.1439273656869773, "Learning Rate/Discriminator": 0.002352941082790494, "Learning Rate/Generator": 0.0020000000949949026, "data time": 0.0036810599267482758, "iter time": 0.24490128830075264, "run time": 66108.140625}

Convert Pre-trained Models

See Model Conversion for details.

Prepare Datasets

See Dataset Preparation for details.

Develop

See Contributing Guide for details.

License

The project is under MIT License.

Acknowledgement

This repository originates from GenForce, with all modules carefully optimized to make it more flexible and robust for distributed training. On top of GenForce where only StyleGAN training is provided, this repository also supports training StyleGAN2 and StyleGAN3, both of which are fully reproduced. Any new method is welcome to merge into this repository! Please refer to the Develop section.

Contributors

The main contributors are listed as follows.

Member Contribution
Yujun Shen Refactor and optimize the entire codebase and reproduce start-of-the-art approaches.
Zhiyi Zhang Contribute to a number of sub-modules and functions, especially dataset related.
Dingdong Yang Contribute to DALI data loading acceleration.
Yinghao Xu Originally contribute to runner and loss functions in GenForce.
Ceyuan Yang Originally contribute to data loader in GenForce.
Jiapeng Zhu Originally contribute to evaluation metrics in GenForce.

BibTex

We open source this library to the community to facilitate the research. If you do like our work and use the codebase for your projects, please cite our work as follows.

@misc{hammer2022,
  title =        {Hammer: An Efficient Toolkit for Training Deep Models.},
  author =       {Shen, Yujun and Zhang, Zhiyi and Yang, Dingdong and Xu, Yinghao and Yang, Ceyuan and Zhu, Jiapeng},
  howpublished = {\url{https://github.com/bytedance/Hammer}},
  year =         {2022}
}
Owner
Bytedance Inc.
Bytedance Inc.
Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

3 May 12, 2022
Optimal space decomposition based-product quantization for approximate nearest neighbor search

Optimal space decomposition based-product quantization for approximate nearest neighbor search Abstract Product quantization(PQ) is an effective neare

Mylove 1 Nov 19, 2021
Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model

Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model. Designed sample dashboard with insights and recommendation for

Yash 2 Apr 07, 2022
Rule Based Classification Project For Python

Rule-Based-Classification-Project (ENG) Business Problem: A game company wants to create new level-based customer definitions (personas) by using some

Deniz Can OĞUZ 4 Oct 29, 2022
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation

Panoptic NeRF Project Page | Paper | Dataset Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu*, Shangzhan zhang*,

Xiao Fu 111 Dec 16, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
PyTorch implementation of Neural Dual Contouring.

NDC PyTorch implementation of Neural Dual Contouring. Citation We are still writing the paper while adding more improvements and applications. If you

Zhiqin Chen 140 Dec 26, 2022
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
simple artificial intelligence utilities

Simple AI Project home: http://github.com/simpleai-team/simpleai This lib implements many of the artificial intelligence algorithms described on the b

921 Dec 08, 2022
Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far Can We Go?" submitted to TOSEM

tosem2021-personality-rep-package Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far

Collaborative Development Group 1 Dec 13, 2021
[ICCV' 21] "Unsupervised Point Cloud Pre-training via Occlusion Completion"

OcCo: Unsupervised Point Cloud Pre-training via Occlusion Completion This repository is the official implementation of paper: "Unsupervised Point Clou

Hanchen 204 Dec 24, 2022
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
Unofficial PyTorch implementation of MobileViT.

MobileViT Overview This is a PyTorch implementation of MobileViT specified in "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Tr

Chin-Hsuan Wu 348 Dec 23, 2022
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022