[ICCV 2021] Official PyTorch implementation for Deep Relational Metric Learning.

Related tags

Deep LearningDRML
Overview

Deep Relational Metric Learning

This repository is the official PyTorch implementation of Deep Relational Metric Learning.

Framework

AEL

DRML

Datasets

CUB-200-2011

Download from here.

Organize the dataset as follows:

- cub200
    |- train
    |   |- class0
    |   |   |- image0_1
    |   |   |- ...
    |   |- ...
    |- test
        |- class100
        |   |- image100_1
        |   |- ...
        |- ...

Cars196

Download from here.

Organize the dataset as follows:

- cars196
    |- train
    |   |- class0
    |   |   |- image0_1
    |   |   |- ...
    |   |- ...
    |- test
        |- class98
        |   |- image98_1
        |   |- ...
        |- ...

Requirements

To install requirements:

pip install -r requirements.txt

Training

Baseline models

To train the baseline model with the ProxyAnchor loss on CUB200, run this command:

CUDA_VISIBLE_DEVICES=0 python examples/train/main.py \
--save_name <experiment-name> \
--data_path <path-of-data> \
--phase train \
--device 0 \
--setting proxy_baseline \
--dataset cub200 \
--num_classes 100 \
--batch_size 120 \
--delete_old

To train the baseline model with the ProxyAnchor loss on Cars196, run this command:

CUDA_VISIBLE_DEVICES=0 python examples/train/main.py \
--save_name <experiment-name> \
--data_path <path-of-data> \
--phase train \
--device 0 \
--setting proxy_baseline \
--dataset cars196 \
--num_classes 98 \
--batch_size 120 \
--delete_old

DRML models

To train the proposed DRML model using the ProxyAnchor loss on CUB200 in the paper, run this command:

CUDA_VISIBLE_DEVICES=0 python examples/train/main.py \
--save_name <experiment-name> \
--data_path <path-of-data> \
--phase train \
--device 0 \
--setting proxy \
--dataset cub200 \
--num_classes 100 \
--batch_size 120 \
--delete_old

To train the proposed DRML model using the ProxyAnchor loss on Cars196 in the paper, run this command:

CUDA_VISIBLE_DEVICES=0 python examples/train/main.py \
--save_name <experiment-name> \
--data_path <path-of-data> \
--phase train \
--device 0 \
--setting proxy \
--dataset cars196 \
--num_classes 98 \
--batch_size 120 \
--delete_old

Device

We tested our code on a linux machine with an Nvidia RTX 3090 GPU card. We recommend using a GPU card with a memory > 8GB (BN-Inception + batch-size of 120 ).

Results

The baseline models achieve the following performances:

Model name Recall @ 1 Recall @ 2 Recall @ 4 Recall @ 8 NMI
cub200-ProxyAnchor-baseline 67.3 77.7 85.7 91.4 68.7
cars196-ProxyAnchor-baseline 84.4 90.7 94.3 96.8 69.7

Our models achieve the following performances:

Model name Recall @ 1 Recall @ 2 Recall @ 4 Recall @ 8 NMI
cub200-ProxyAnchor-ours 68.7 78.6 86.3 91.6 69.3
cars196-ProxyAnchor-ours 86.9 92.1 95.2 97.4 72.1

COMING SOON

  • We will upload the code for cross-validation setting soon.
  • We will update the optimal hyper-parameters of the experiments soon.
Owner
Borui Zhang
I am a first year Ph.D student in the Department of Automation at THU. My research direction is computer vision.
Borui Zhang
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
SW components and demos for visual kinship recognition. An emphasis is put on the FIW dataset-- data loaders, benchmarks, results in summary.

FIW Data Development Kit Table of Contents Introduction Families In the Wild Database Publications Organization To Do License Getting Involved Introdu

Joseph P. Robinson 12 Jun 04, 2022
Embeds a story into a music playlist by sorting the playlist so that the order of the music follows a narrative arc.

playlist-story-builder This project attempts to embed a story into a music playlist by sorting the playlist so that the order of the music follows a n

Dylan R. Ashley 0 Oct 28, 2021
An open-access benchmark and toolbox for electricity price forecasting

epftoolbox The epftoolbox is the first open-access library for driving research in electricity price forecasting. Its main goal is to make available a

97 Dec 05, 2022
A Python library for generating new text from existing samples.

ReMarkov is a Python library for generating text from existing samples using Markov chains. You can use it to customize all sorts of writing from birt

8 May 17, 2022
KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

KGDet: Keypoint-Guided Fashion Detection (AAAI 2021) This is an official implementation of the AAAI-2021 paper "KGDet: Keypoint-Guided Fashion Detecti

Qian Shenhan 35 Dec 29, 2022
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems

The SLIDE package contains the source code for reproducing the main experiments in this paper. Dataset The Datasets can be downloaded in Amazon-

Intel Labs 72 Dec 16, 2022
GT China coal model

GT China coal model The full version of a China coal transport model with a very high spatial reslution. What it does The code works in a few steps: T

0 Dec 13, 2021
Beyond imagenet attack (accepted by ICLR 2022) towards crafting adversarial examples for black-box domains.

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"

Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w

Jinjiarui 69 Nov 24, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Raghvender 2 Feb 14, 2022