This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Overview

Visual Attributes in the Wild (VAW)

This repository provides data for the VAW dataset as described in the CVPR 2021 Paper:

Learning to Predict Visual Attributes in the Wild

Khoi Pham, Kushal Kafle, Zhihong Ding, Zhe Lin, Quan Tran, Scott Cohen, Abhinav Shrivastava

VAW Main Image

Dataset Setup

Our VAW dataset is partly based on the annotations in the GQA and the VG-PhraseCut datasets.
Therefore, the images in the VAW dataset come from the Visual Genome dataset which is also the source of the images in the GQA and the VG-Phrasecut datasets. This section outlines the annotation format and basic statistics of our dataset.

Annotation Format

The annotations are found in data/train_part1.json, data/train_part2.json , data/val.json and data/test.json for train (split into two parts to circumvent github file-size limit) , validation and test splits in the VAW dataset respectively. The files consist of the following fields:

image_id: int (Image ids correspond to respective Visual Genome image ids)
instance_id: int (Unique instance ID)
instance_bbox: [x, y, width, height] (Bounding box co-ordinates for the instance)
instance_polygon: list of [x y] (List of vertices for segmentation polygon if exists else None)
object_name: str (Name of the object for the instance)
positive_attributes: list of str (Explicitly labeled positive attributes for the instance)
negative_attributes: list of str (Explicitly labeled negative attributes for the instance)

Download Images

The images can be downloaded from the Visual Genome website. The image_id field in our dataset corresponds to respective image ids in the v1.4 in the Visual Genome dataset.

Explore Data and View Live Demo

Head over to our accompanying website to explore the dataset. The website allows exploration of the VAW dataset by filtering our annotations by objects, positive attributes, or negative attributes in the train/val set. The website also shows interactive demo for our SCoNE algorithm as described in our paper.

Dataset Statistics

Basic Stats

Detail Stat
Number of Instances 260,895
Number of Total Images 72,274
Number of Unique Attributes 620
Number of Object Categories 2260
Average Annotation per Instance (Overall) 3.56
Average Annotation per Instance (Train) 3.02
Average Annotation per Instance (Val) 7.03

Evaluation

The evaluation script is provided in eval/evaluator.py. We also provide eval/eval.py as an example to show how to use the evaluation script. In particular, eval.py expects as input the followings:

  1. fpath_pred: path to the numpy array pred of your model prediction (shape (n_instances, n_class)). pred[i,j] is the predicted probability for attribute class j of instance i. We provide eval/pred.npy as a sample for this, which is the output of our best model (last row of table 2) in the paper.
  2. fpath_label: path to the numpy array gt_label that contains the groundtruth label of all instances in the test set (shape (n_instances, n_class)). gt_label[i,j] equals 1 if instance i is labeled positive with attribute j, equals 0 if it is labeled negative with attribute j, and equals 2 if it is unlabeled for attribute j. We provide eval/gt_label.npy as a sample for this, which we have created from data/test.json.
  3. Other files in folder data which have been set with default values in eval/eval.py.

From the eval folder, run the evaluation script as follows:

python eval.py --fpath_pred pred.npy --fpath_label gt_label.npy

We recently updated the grouping of attributes, So, there is a small discrepancy between the scores of our eval/pred.npy versus the numbers reported in the paper on each attribute group. A detailed attribute-wise breakdown will also be saved in a format shown in eval/output_detailed.txt.

Citation

Please cite our CVPR 2021 paper if you use the VAW dataset or the SCoNE algorithm in your work.

@InProceedings{Pham_2021_CVPR,
    author    = {Pham, Khoi and Kafle, Kushal and Lin, Zhe and Ding, Zhihong and Cohen, Scott and Tran, Quan and Shrivastava, Abhinav},
    title     = {Learning To Predict Visual Attributes in the Wild},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {13018-13028}
}

Disclaimer and Contact

This dataset contains objects labeled with a variety of attributes, including those applied to people. Datasets and their use are the subject of important ongoing discussions in the AI community, especially datasets that include people, and we hope to play an active role in those discussions. If you have any feedback regarding this dataset, we welcome your input at [email protected]

You might also like...
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

This is the official repo for TransFill:  Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations at CVPR'21. According to some product reasons, we are not planning to release the training/testing codes and models. However, we will release the dataset and the scripts to prepare the dataset. Generative Query Network (GQN) in PyTorch as described in
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

Repository for the paper
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Repository of our paper 'Refer-it-in-RGBD' in CVPR 2021
Repository of our paper 'Refer-it-in-RGBD' in CVPR 2021

Refer-it-in-RGBD This is the repository of our paper 'Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD Images' in CVPR 2021 Pape

Comments
  • Attribute super-class

    Attribute super-class

    Hi, Thank you for releasing the attribute annotations. A am very interested in the dataset. Are you also planning to release the superclass list of attributes from the paper (the Class imbalance and Attribute types)? And could you provide your evaluation code to reproduce your results and use the dataset?

    Best, Maria

    question 
    opened by mabravo641 1
  • Inference details

    Inference details

    Hi @kushalkafle, thanks for your great works of VAW and LSA. And I have some questions about the inference details of the SCoNE and TAP. During inference, For SCoNE, did you crop out the object region first and then evaluate the precision of the method for each bounding box? For TAP and OpenTAP, did you just input the test image and multi objects with bounding boxes, then the model will output the attributes of each object? I wonder if the above conjectures match the real experimental design. Looking forward to your reply and thanks in advance!

    opened by waveboo 0
  • object name embedding

    object name embedding

    Hi, I am a little confused about the object embedding procedure. As mentioned in the paper, GloVe 100-d word embeddings are used as the object name embedding. However, some of the object names are not contained in the Glove embeddings. How to tackle these names? For example, 'american flag', "boy's arm", 'two suitcases', 'computer keyboard', 'larger horse', 'living room wall', 'navy blue shirt', 'of the aisle', 'hotdog bun', 'train station', 'skull picture', 'disney princess', 'neck tie'.

    Thanks.

    opened by GriffinLiang 0
Releases(v1.0)
A visualisation tool for Deep Reinforcement Learning

DRLVIS - Visualising Deep Reinforcement Learning Created by Marios Sirtmatsis with the support of Alex Bäuerle. DRLVis is an application used for visu

Marios Sirtmatsis 1 Nov 04, 2021
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
Code for our ALiBi method for transformer language models.

Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation This repository contains the code and models for our paper Tra

Ofir Press 211 Dec 31, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering PC-SOS-SDP is an exact algorithm based on the branch-and-bound techn

Antonio M. Sudoso 1 Nov 13, 2022
Dynamic Head: Unifying Object Detection Heads with Attentions

Dynamic Head: Unifying Object Detection Heads with Attentions dyhead_video.mp4 This is the official implementation of CVPR 2021 paper "Dynamic Head: U

Microsoft 550 Dec 21, 2022
A small library for creating and manipulating custom JAX Pytree classes

Treeo A small library for creating and manipulating custom JAX Pytree classes Light-weight: has no dependencies other than jax. Compatible: Treeo Tree

Cristian Garcia 58 Nov 23, 2022
Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation

Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation This repository contains the Pytorch implementation of the proposed

Devavrat Tomar 19 Nov 10, 2022
NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows This repo contains the code for the paper Tractable Densit

Layer6 Labs 4 Dec 12, 2022
A PyTorch implementation of Radio Transformer Networks from the paper "An Introduction to Deep Learning for the Physical Layer".

An Introduction to Deep Learning for the Physical Layer An usable PyTorch implementation of the noisy autoencoder infrastructure in the paper "An Intr

Gram.AI 120 Nov 21, 2022
PN-Net a neural field-based framework for depth estimation from single-view RGB images.

PN-Net We present a neural field-based framework for depth estimation from single-view RGB images. Rather than representing a 2D depth map as a single

1 Oct 02, 2021
This repository contains the PyTorch implementation of the paper STaCK: Sentence Ordering with Temporal Commonsense Knowledge appearing at EMNLP 2021.

STaCK: Sentence Ordering with Temporal Commonsense Knowledge This repository contains the pytorch implementation of the paper STaCK: Sentence Ordering

Deep Cognition and Language Research (DeCLaRe) Lab 23 Dec 16, 2022
Calibrated Hyperspectral Image Reconstruction via Graph-based Self-Tuning Network.

mask-uncertainty-in-HSI This repository contains the testing code and pre-trained models for the paper Calibrated Hyperspectral Image Reconstruction v

JIAMIAN WANG 9 Dec 29, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Facebook Research 69 Dec 29, 2022
Simple transformer model for CIFAR10

CIFAR-Transformer Simple transformer model for CIFAR10. Reference: https://www.tensorflow.org/text/tutorials/transformer https://github.com/huggingfac

9 Nov 07, 2022
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 08, 2023
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022