Segmentation-Aware Convolutional Networks Using Local Attention Masks

Related tags

Deep Learningsegaware
Overview

Segmentation-Aware Convolutional Networks Using Local Attention Masks

[Project Page] [Paper]

Segmentation-aware convolution filters are invariant to backgrounds. We achieve this in three steps: (i) compute segmentation cues for each pixel (i.e., “embeddings”), (ii) create a foreground mask for each patch, and (iii) combine the masks with convolution, so that the filters only process the local foreground in each image patch.

Installation

For prerequisites, refer to DeepLabV2. Our setup follows theirs almost exactly.

Once you have the prequisites, simply run make all -j4 from within caffe/ to compile the code with 4 cores.

Learning embeddings with dedicated loss

  • Use Convolution layers to create dense embeddings.
  • Use Im2dist to compute dense distance comparisons in an embedding map.
  • Use Im2parity to compute dense label comparisons in a label map.
  • Use DistLoss (with parameters alpha and beta) to set up a contrastive side loss on the distances.

See scripts/segaware/config/embs for a full example.

Setting up a segmentation-aware convolution layer

  • Use Im2col on the input, to arrange pixel/feature patches into columns.
  • Use Im2dist on the embeddings, to get their distances into columns.
  • Use Exp on the distances, with scale: -1, to get them into [0,1].
  • Tile the exponentiated distances, with a factor equal to the depth (i.e., channels) of the original convolution features.
  • Use Eltwise to multiply the Tile result with the Im2col result.
  • Use Convolution with bottom_is_im2col: true to matrix-multiply the convolution weights with the Eltwise output.

See scripts/segaware/config/vgg for an example in which every convolution layer in the VGG16 architecture is made segmentation-aware.

Using a segmentation-aware CRF

  • Use the NormConvMeanfield layer. As input, give it two copies of the unary potentials (produced by a Split layer), some embeddings, and a meshgrid-like input (produced by a DummyData layer with data_filler { type: "xy" }).

See scripts/segaware/config/res for an example in which a segmentation-aware CRF is added to a resnet architecture.

Replicating the segmentation results presented in our paper

  • Download pretrained model weights here, and put that file into scripts/segaware/model/res/.
  • From scripts, run ./test_res.sh. This will produce .mat files in scripts/segaware/features/res/voc_test/mycrf/.
  • From scripts, run ./gen_preds.sh. This will produce colorized .png results in scripts/segaware/results/res/voc_test/mycrf/none/results/VOC2012/Segmentation/comp6_test_cls. An example input-ouput pair is shown below:

- If you zip these results, and submit them to the official PASCAL VOC test server, you will get 79.83900% IOU.

If you run this set of steps for the validation set, you can run ./eval.sh to evaluate your results on the PASCAL VOC validation set. If you change the model, you may want to run ./edit_env.sh to update the evaluation instructions.

Citation

@inproceedings{harley_segaware,
  title = {Segmentation-Aware Convolutional Networks Using Local Attention Masks},
  author = {Adam W Harley, Konstantinos G. Derpanis, Iasonas Kokkinos},
  booktitle = {IEEE International Conference on Computer Vision (ICCV)},
  year = {2017},
}

Help

Feel free to open issues on here! Also, I'm pretty good with email: [email protected]

The code for paper "Learning Implicit Fields for Generative Shape Modeling".

implicit-decoder The tensorflow code for paper "Learning Implicit Fields for Generative Shape Modeling", Zhiqin Chen, Hao (Richard) Zhang. Project pag

Zhiqin Chen 353 Dec 30, 2022
Unofficial implementation of One-Shot Free-View Neural Talking Head Synthesis

face-vid2vid Usage Dataset Preparation cd datasets wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl chmod a+rx youtube-dl python load_

worstcoder 68 Dec 30, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022
Implementation of TabTransformer, attention network for tabular data, in Pytorch

Tab Transformer Implementation of Tab Transformer, attention network for tabular data, in Pytorch. This simple architecture came within a hair's bread

Phil Wang 420 Jan 05, 2023
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022
🇰🇷 Text to Image in Korean

KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo

HappyFace 74 Sep 22, 2022
[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

Wenhao Wu 114 Nov 27, 2022
Implementation of a Transformer, but completely in Triton

Transformer in Triton (wip) Implementation of a Transformer, but completely in Triton. I'm completely new to lower-level neural net code, so this repo

Phil Wang 152 Dec 22, 2022
Tracking Progress in Question Answering over Knowledge Graphs

Tracking Progress in Question Answering over Knowledge Graphs Table of contents Question Answering Systems with Descriptions The QA Systems Table cont

Knowledge Graph Question Answering 47 Jan 02, 2023
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

Alexis David Jacq 172 Dec 12, 2022
The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer

ELSA: Enhanced Local Self-Attention for Vision Transformer By Jingkai Zhou, Pich

DamoCV 87 Dec 19, 2022
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

47 Dec 19, 2022
This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems.

This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. The main directory include the code

0 Dec 23, 2021
Example of a Quantum LSTM

Example of a Quantum LSTM

Riccardo Di Sipio 36 Oct 31, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Improving Factual Consistency of Abstractive Text Summarization

Improving Factual Consistency of Abstractive Text Summarization We provide the code for the papers: "Entity-level Factual Consistency of Abstractive T

61 Nov 27, 2022
[Machine Learning Engineer Basic Guide] 부스트캠프 AI Tech - Product Serving 자료

Boostcamp-AI-Tech-Product-Serving 부스트캠프 AI Tech - Product Serving 자료 Repository 구조 part1(MLOps 개론, Model Serving, 머신러닝 프로젝트 라이프 사이클은 별도의 코드가 없으며, part

Sung Yun Byeon 269 Dec 21, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022